
Private Information Retrieval with Guaranteed Output

ABSTRACT
Private Information Retrieval (PIR) allows a client to query a server

holding a database 𝐷 (or a set of non-colluding servers holding

the same database) for the value of the database at index 𝑖 (i.e.,

𝐷 [𝑖]). Security warrants that the servers must not learn anything

about 𝑖 . Much research has focused on the concrete efficiency of

PIR schemes; however, no scheme guarantees that the client will
indeed receive 𝐷 [𝑖] when some threshold number of servers can

be malicious.

In this work, we construct the first 3-server PIR scheme where

the client is guaranteed to obtain the output even in the presence of

1 malicious server. Our protocol is concretely efficient and enjoys

several attractive properties: 1) The client performs no crypto-

graphic operations; 2) All cryptographic operations performed by

the servers can be done in an offline pre-processing phase without

the involvement of the client; 3) It is based on symmetric key cryp-

tographic primitives. We also demonstrate the practicality of our

protocol with a prototype implementation. On commodity hard-

ware, in the online phase, a query to a database with 2
24

elements

of size 8 B each completes in 152 ms with approximately 4.7 KB of

communication.

CCS CONCEPTS
• Security and privacy→ Privacy-preserving protocols; Man-
agement and querying of encrypted data.

KEYWORDS
Private Information Retrieval, Guaranteed Output Delivery, Dis-

tributed Point Function

ACM Reference Format:
. 2018. Private Information Retrieval with Guaranteed Output. In Proceedings
of Make sure to enter the correct conference title from your rights confirmation
emai (Conference acronym ’XX). ACM, New York, NY, USA, 12 pages. https:

//doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
One of the most widely studied problems in cryptography is that

of Private Information Retrieval (PIR) [22]. In this problem, there is

a server S holding a database 𝐷 comprising of 𝑁 elements and a

client C with an index 𝑖 (ranging from 0 to 𝑁 − 1). The goal is for
the client to learn the 𝑖 th element of 𝐷 , i.e. 𝐷 [𝑖], while ensuring that
S learns nothing about 𝑖 . A trivial way of solving this problem is for

C to download the entire database irrespective of the index being

read. However, this solution has a communication complexity of 𝑁 .

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

Several works have studied the communication and computational

complexity of this problem [2, 5, 11, 31, 50–52, 56] and many works

have also shown the importance of PIR both in theory [4, 9, 10, 24,

41, 43, 44] and in practice [6, 39, 40, 56]. For the purpose of obtaining

efficient solutions, a long line of work has also considered PIR in

the multi-server setting [4, 9, 13, 31, 32], where 𝑚 ≥ 2 servers

S0, · · · ,S𝑚−1 hold the copy of the same database and it is assumed

that the servers do not collude with each other to learn 𝑖 .

PIR protocols can be used to achieve privacy in various appli-

cations like media streaming [39], ad services [37], location based

services [33], online presence detection [12] and anonymous mes-

saging [7, 48, 53] and as such designing efficient and robust PIR

protocols is important.

Despite much work in the area, no work has addressed the case

where the server(s) could be malicious and the goal of malicious

servers is to learn information about 𝑖 or prevent the client from

learning 𝐷 [𝑖]. This notion of security (studied in the context of

secure multi-party computation (MPC) in cryptography) is known

as guaranteed output delivery (GOD) where honest participants are

guaranteed to obtain the output of the computation despite the

malicious behaviour of (a threshold number of) other participants.

In the context of PIR, we will require that an honest client C learns

the correct value of 𝐷 [𝑖] despite the malicious behaviour of 𝑡 < 𝑚

servers. Guaranteed output delivery in the presence of malicious

entities is of great practical relevance, especially in the client-server

models. In multi-server PIR solutions, a malicious server may result

in denial-of-service attack for all honest clients, or can even choose

when to deny service, rendering the application meaningless.

Number of servers. When such stringent security is required,

then it can be easily seen that such a setting requires the presence

of at least𝑚 = 3 servers even when at most 1 server may be ma-

licious. To see this, observe that in the case of a single corrupted

server, the server can choose not to respond to a client’s query.

In case where there are only 2 servers, then the malicious server

can simply follow the protocol honestly with a corrupted copy of

the database 𝐷′ and the client cannot tell apart the actions of the

honest server running the protocol with 𝐷 and the malicious server

running the protocol with 𝐷′. Hence, we focus on the minimal

setting of 3 servers S0,S1, and S2 who hold identical copies of the

database 𝐷 where at most one server may be corrupted.

Potential solution and drawback. A potential candidate solu-

tion to the above problem is to use a single-server PIR solution

that provides privacy against malicious servers. All 2-round single

server PIR schemes, e.g., [6, 29, 52, 56], satisfy this requirement of

privacy against malicious servers. Now, to build a solution with

GOD security, the client can run the single-server PIR protocol

with each of the 3 servers separately, obtain𝐷 [𝑖]0, 𝐷 [𝑖]1, and𝐷 [𝑖]2
from S0,S1, and S2 respectively and take the majority of these 3

values. Since 2 servers are guaranteed to be honest, the majority

value will indeed be correct, while since the PIR solution is private

against malicious servers, the malicious server will also not learn

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

anything about 𝑖 . However, single-server PIR schemes are compu-

tationally expensive for both the server as well as the client. The

servers need to perform many public-key operations and the client

is not lightweight. In particular, the client also needs to perform

heavy public-key cryptographic operations.

Goal. Our goal is to construct a 3-server PIR solution that has GOD

security, where the client performs no cryptographic operations. In
other words, we want the client to be lightweight and hence, as

efficient as possible.

Need for server-to-server interaction. First, observe that even
if we only want the weaker security against semi-honest servers,

but require low (poly-logarithmic in 𝑁) communication complex-

ity and the client to not perform any cryptographic operations,

then we would need the servers to interact with each other (or

channel these messages through the honest client, thus resulting

in a multi-round PIR protocol) unless significant advancements

are attained in the field of information-theoretic PIR [61]. This is

because any such non-interactive protocol would readily imply an

information-theoretic PIR scheme. Hence, any efficient solution for

a 3-server PIR with GOD security and non-cryptographic client

must allow the servers to interact with each other. Moreover, to

achieve total communication that is only poly-logarithmic in the

database size, we need to rely on cryptographic assumptions, e.g.,

one-way functions.

1.1 Our Results
We construct an efficient 3-server PIR protocol with guaranteed

output delivery for the client in the presence of one malicious

server, in which the client does not perform any cryptographic

operations. Our solution relies on the security of one-way func-

tions and is concretely efficient with a total communication of

O(𝜆 log𝑁) bits, where 𝜆 is the computational security parameter

and 𝑁 is the database size. Further, our solution can be split into an

offline pre-processing phase where communication happens only

between servers and an online phase where all parties only perform

light-weight non-cryptographic operations. That is, all expensive

cryptographic operations are pushed to an input-independent of-

fline phase. Moreover, the offline phase only depends on the number

of entries in the database and is even independent of the size of each

entry. In the offline phase, the total communication is one round of

communication of ≈ 𝜆 log𝑁 bits from S2 to S0 and S1 each. Every
server performs ≈ 𝑁 pseudo-random generator (PRG) evaluations

in the offline phase. In the online phase, our protocol has a total

of 3 rounds in the case when the servers are not malicious and a

worst-case complexity of 5 when a server behaves maliciously. The

total communication between the client and servers is ≈ 11𝜆 log𝑁 .

We build a prototype implementation of our PIR protocol and

show it to be concretely efficient (Section 5). On commodity hard-

ware, for a database with 2
20

elements and 8 bytes database entry,

the offline phase of our protocol communicates only 830 bytes with

a runtime of 577ms. In the online phase, the total communication is

only 4 KB with a runtime of 11 ms. Of this runtime, the client-side

compute only takes 1.1 ms. For database with entries of size 1 KB,

the online phase takes 179 ms and 7.9 KB of communication. Fur-

thermore, lowering of bandwidth between the client and servers has

negligible impact on performance (due to the low communication

of our protocol). Compared to the vanilla solution based on single-

server PIR discussed above, our protocols have up to 4893× lower

communication and are up to 146× faster (the best single-server

PIR schemes either suffer from high communication or latency).

Even considering only online time, our protocol communicates up

to 1878× lesser data and is up to 37× faster.

1.2 Our Techniques
2-server PIR. Our starting point is a 2-server PIR solution [13]

(secure only against semi-honest servers) based on distributed point

functions (DPF). A point function 𝑓𝛼,𝛽 is a function that evaluates to

0 everywhere, except at a special point𝛼 where it evaluates to 𝛽 . In a

DPF scheme for function 𝑓𝛼,𝛽 , a dealer generates keys𝑘0 and𝑘1 to be

given to 2 parties S0 and S1 respectively. 𝑘𝑏 , 𝑏 ∈ {0, 1} individually
is guaranteed to hide 𝛼 and 𝛽 . S𝑏 can then locally evaluate the

function at any public input point 𝑥 to obtain arithmetic secret

shares of 𝑦𝑥 = 𝑓𝛼,𝛽 (𝑥) (i.e., S0 and S1 learn random values 𝑧𝑥,0
and 𝑧𝑥,1 such that 𝑧𝑥,0 + 𝑧𝑥,1 = 𝑧𝑥). A DPF scheme can be used to

construct a 2-server PIR protocol - the client, with index 𝑖 , creates a

DPF key for 𝑓𝑖,1 and gives the keys to S0 and S1, who evaluate the

function on all points 𝑥 ∈ [𝑁]. Now, both servers can locally take

an inner product of the database with the shares they obtain (i.e.,

𝑆𝑏 computes 𝑧𝑏 =
∑𝑁

𝑗=1 𝑧 𝑗,𝑏 · 𝐷 [𝑗]). It is easy to see then that the

servers hold shares of 𝐷 [𝑖] (i.e., 𝑧0 + 𝑧1 = 𝐷 [𝑖]). Now, one can add

verifiability to the above solution (i.e., ensure that the client never

accepts an incorrect 𝐷 [𝑖]) using the techniques from [25, 27, 28],

that adds an information-theoretic message authentication codes

to the DPF outputs. This would give us a 2-server PIR solution with

malicious privacy (but no GOD security).

This 2-server PIR has the following overheads: a) Communi-

cation between client and servers consists of DPF keys and is

≈ 𝜆 log𝑁 b) Client performs ≈ log𝑁 PRG evaluations c) Servers

perform ≈ 𝑁 PRG evaluations. Aside from not obtaining GOD

security and also requiring the client to perform cryptographic

operations, this solution also suffers from the following drawback.

It requires the servers to perform ≈ 𝑁 PRG evaluations in the on-
line phase (i.e., in the critical PIR query path), since the DPF key is

computed and given to the servers by the client.

Our Construction.We now present our 3−server protocol with
GOD security in which all expensive PRG operations can be per-

formed by the servers in the offline phase. The first idea is to "out-

source" the client computation in the above solution to the server.

To ensure that the index remains hidden, we must now instead run

a secure computation protocol to emulate the client. The work of

Doerner and shelat [30] shows how to construct a 2-party secure

distributed keygen protocol to generate DPF keys 𝑘0 and 𝑘1 for the

DPF function 𝑓𝛼,𝛽 , where 𝛼 and 𝛽 are secret-shared among the two

parties. An attractive feature of their protocol is that the protocol

only makes black-box use of PRGs. Unfortunately, their protocol

suffers from two drawbacks: first, it is only semi-honest secure;

second, it is highly interactive (specifically, parties interact in log𝑁

instances of secure 2-party computation sequentially).

Private Information Retrieval with Guaranteed Output Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

To obtain GOD security against a malicious server, our idea is

to leverage the third server and use the technique of "MPC-in-the-

head". At a high level, we will require S2 to internally execute

the semi-honest distributed keygen protocol to generate views of

both S0 and S1. Similar to the idea of replicated secret sharing, we

will then also have S0 and S1 execute the same protocol with the

same randomness, thus enabling verification of correct computa-

tion through a simple comparison of views. However, this would

still require S0 and S1 to interact over log𝑁 rounds of secure com-

putation.

Our third idea is to observe that S0 and S1 need not actually

interact in the distributed keygen protocol but instead can rely on

S2 to provide the outputs that need to be computed at every step.

However, this introduces a new complexity. How does one ensure

that the outputs provided by S2 are indeed correct? Here is where

we make use of the client to verify that the computation has been

done correctly. In fact, not only are we able to verify correctness of

computation, but we can make use of the client to also identify a

trusted party in the event that malicious behaviour was detected.

Once a trusted party is identified, the client can simply provide

its index to this trusted party
1
which will provide the client with

the right value. Note that this is indeed the standard approach

to obtaining GOD security [21, 58] and doing so does not break

security – indeed, trusted or honest parties are allowed to learn

private inputs of other parties, as is done in many prior works that

achieve GOD security [15, 16, 42, 45].

Our final idea is an observation (from [17]), that one can run the

DPF keygen on a random special point, instead of the index being

queried and then "rotate" the database appropriately to obtain the

queried value. This enables us to push all cryptographic operations

to an offline preprocessing phase thereby obtaining a lightweight

online phase.

Putting all this together, offline phase only uses symmetric key

cryptography and a single message of outputs from keygen fromS2
to S0,S1 each. The online phase involves a lightweight verification
by the client (O(log𝑁) complexity) and a simple inner-product by

the servers, thereby obtaining a lightweight online phase.

1.3 Other Related Works
The seminal work of Chor et al. [22] introduced the problem of PIR

and provided the first information-theoretic solution to the problem

in the 2-server setting with communication complexity of O(𝑁
1

3).
The work of Efremenko [32] and Itoh and Suzuki [43] considered

PIR in the multi-server (> 2) setting with improved communica-

tion complexity. It is known that short locally decodable codes

(LDCs) yield efficient PIR schemes [44] and vice-versa. Recently,

1
If indeed, we wish to provide privacy against a single (even honest) server, we can

construct a 4-server PIR protocol achieving GOD security using our 3-server PIR

protocol in a black-box manner as follows. We run our 3-server solution with every set

of 3 out of the 4 servers independently. From the property of our 3-server protocol, we

know that every instance will either succeed with the right output or will abort leading

to the client identifying a single honest server. Running our 3-server protocol amongst

all 4 sets of 3 servers, ensures that at least one execution has no corrupt parties. Hence,

the client can take the output of this execution as the final output (in other words,

any execution that does not lead to an abort output leads to the right output and

we guarantee that at least one execution will have this property). Furthermore, the

properties of our 3-server protocol: i.e., constant rounds, no cryptographic operation

in online phase, poly log communication etc., all naturally extend to this 4-server

protocol.

the work of Dvir and Gopi [31] provided a 2-server solution with

communication complexity of O
(
𝑁
√
log log𝑁 /log𝑁

)
.

Kushilevitz and Ostrovsky [47] first considered the problem of

PIR in the computational setting and provided a single server PIR

solution with communication complexity O(
√
𝑁). Since then, much

progress has been made [18, 19, 35, 60]. Asymptotically, the best

known solution [34] has communication of O(log𝑁). Concretely
efficient solutions to this problem have also been explored [6, 29, 51,

52, 56] based on homomorphic encryption. While these solutions

have very low communication overhead, they have extremely large

computational cost (as an example, in the state-of-the-art scheme

of [29], querying a database with 2
18

elements requires the server

to perform > 17𝑠 of computation on commodity hardware).

Given the high overheads of single-server PIR, several works

have also explored computationally secure PIR solutions in the

multi-server (≥ 2) setting. Here, concretely efficient solutions can

be obtained based on one-way functions [13, 36] using the technique

of distributed point functions (DPFs) instead of relying on public-

key assumptions such as homomorphic encryption. These protocols

have𝑂 (log𝑁) communication. In terms of computational overhead,

the client performs 𝑂 (log𝑁) PRG evaluations, while the server

must perform𝑂 (𝑁) PRG evaluations. These solutions offer security

only against semi-honest servers. Using the technique from [13, 14],

one can modify the payload of the DPF, to also obtain security with

abort against one malicious server. However, these solutions do not

guarantee that the client will learn the output.

A recent line of work has also studied PIR in an offline/online

setting [24] requiring the servers to do work proportional to 𝑁

only in an offline preprocessing phase (while interacting with the

client) and construct protocols with sub-linear online computation

time. Finally, the very recent work of [49] show how to perform

an offline preprocessing that is independent of the client and still

enable O(log𝑐 𝑁) online overhead. A similar work of [38] proposes

general multi server PIR that acheives sublinear online time and

concrete efficiency for large databases. These works only provide

privacy against malicious servers and are only efficient for very

large database.

Many works on secure multiparty computation (MPC) consider

the case of MPC amongst a few parties with the focus on secu-

rity with abort [8, 20, 54, 57]. In the honest majority setting, the

strongest notion of security in MPC is that of guaranteed output

delivery. Honest majority is necessary to achieve GOD [23]. Ishai

et al. [42] give a general transformation to obtain protocols with

guaranteed output delivery in honest majority from semi honest

secure protocols. Some of the recent works in privacy preserving

machine learning with MPC have also considered the notion of

GOD specifically for the client-server setting [26, 45, 46].

2 PRELIMINARIES
Let 𝜆 denote the security parameter. We assume familiarity with

basic cryptographic notations such as negligible functions and

computational indistinguishability. We use 𝑎 ← 𝐴 to denote an

element 𝑎 that is uniformly sampled from a set 𝐴.

We use two types of two-out-of-two secret sharing schemes. The

first one is an arithmetic secret sharing scheme. Here, the secret

to be shared is given by a field element 𝑦 ∈ F (where F is a finite

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

field). The shares are generated by choosing random elements from

F subject to their sum being equal to 𝑦. We denote the shares gener-

ated as (⟨𝑦⟩0, ⟨𝑦⟩1). The second type of secret sharing is a Boolean

secret sharing scheme. Here, the secret that needs to be shared is a

binary string and the shares are uniformly sampled subject to their

XOR being equal to the secret. We denote the Boolean share of a

string 𝑣 as (⟨𝑣⟩B
0
, ⟨𝑣⟩B

1
).

2.1 Private Information Retrieval with GOD
We consider the problem of Private Information Retrieval (PIR)

between a client C and the three servers S0,S1, and S2. All the
three servers are given a copy of the database 𝐷 ∈ F𝑁 where F is a
field and 𝑁 = 2

𝑛
. The client has an index 𝑖 ∈ [𝑁] and would like to

retrieve the the 𝑖-th entry of the database 𝐷 given by 𝐷 [𝑖]. PIR is a

protocol that is run between the clients and the servers that allows

the client to retrieve 𝐷 [𝑖].
For security, we consider the setting where one of the servers

might be corrupted by a malicious adversaryA. We require that the

view of the adversary A and the output of the honest client in the

real protocol to be computationally indistinguishable to the ideal

world where the parties have access to an ideal functionality given

by F (Functionality 1). This ideal functionality takes in 𝑖 ∈ [𝑁]
from the client and databases 𝐷0, 𝐷1, 𝐷2 from the three servers

respectively. Note that the honest servers are guaranteed to send

the same database 𝐷 to the oracle whereas the malicious server

could send in an arbitrary database. The functionality checks if

at least two of the three received databases are consistent (let us

denote the consistent database by 𝐷) and if it is the case, it delivers

𝐷 [𝑖] to the client. Note that in the ideal world, the honest client

always receives 𝐷 [𝑖] from the ideal functionality irrespective of

the database sent by the malicious server. This ensures that the

protocol realizing this functionality satisfies the stronger property

of Guaranteed Output Delivery (GOD).

Functionality 1: Ideal functionality F for PIR with GOD

Input: C inputs 𝑖 and S𝑏 (𝑏 ∈ {0, 1, 2}) inputs database 𝐷𝑏 .

1 Atleast two of 𝐷𝑏 received will be identical denoted by 𝐷 .

2 Output 𝐷 [𝑖] to C.

Definition 2.1 (PIR with Guaranteed Output Delivery). A PIR pro-

tocol Π between a client C and three servers S0,S1, and S2 is said
to satisfy guaranteed output delivery if the following properties

hold:

• Security. For any non-uniform PPT adversary A that cor-

rupts one of the three servers, there exists an ideal world

PPT simulator Sim such that for any client input 𝑖 ∈ [𝑁]
and any database 𝐷 ∈ {0, 1}𝑁 (where 𝑁 = 2

𝑛
), we have:

Real(Π,A, 𝑖, 𝐷) ≈𝑐 Ideal(F , Sim, 𝑖, 𝐷)

where Real and Ideal refers to the joint distribution of the

output of the client C and view of the adversary A and the

view of Sim respectively in the real and ideal experiments.

• Efficiency: The communication cost of the protocol Π is

poly(𝜆, 𝑛).

In simulation based security for multi party computation, it is

allowed for client to identify an honest server and send it’s index

to the honest server in clear to receive output and achieve guaran-

teed output delivery. This is because the simulation based security

definition only requires simulation of view of adversary and not of

honest party. In fact, in most MPC protocols secure against mali-

cious adversary, a malicious party can send it’s state to an honest

party which would allow the honest party to learn private inputs

of other parties and this is not prevented by a secure protocol
2
.

Similar to us, many notable works in the literature achieve guar-

anteed output delivery by identifying honest parties and running

computation with them in the clear [15, 16, 21, 42, 45].

3 DISTRIBUTED POINT FUNCTIONS
We now recall the definition of distributed point functions from

[36].

Definition 3.1 (Point Function). A point function 𝑓𝛼,𝛽 is defined

using two parameters (𝛼, 𝛽) ∈ [𝑁] × F (where 𝑁 = 2
𝑛
and F is a

finite field)

𝑓𝛼,𝛽 : [𝑁] → F

𝑓𝛼,𝛽 (𝑥) =
{
𝛽 if 𝑥 = 𝛼

0 otherwise

We call 𝛽 as the payload.

A two-party Distributed Point Function (DPF) scheme is a pair

of PPT algorithms (ΠGen,ΠEval) with the following syntax:

• ΠGen (1𝜆, 𝛼, 𝛽) is a key generation algorithm which on input

1
𝜆, 𝛼 ∈ [𝑁] and 𝛽 ∈ F outputs pair of keys (𝑘0, 𝑘1).

• ΠEval (𝑏, 𝑘𝑏 , 𝑥) is an evaluation algorithm that takes in 𝑏 ∈
{0, 1}, the key 𝑘𝑏 , the evaluation point 𝑥 ∈ [𝑁] and outputs

𝑦𝑥
𝑏
∈ F.

Definition 3.2 (Distributed Point Functions [36]). We require a

two-party DPF to satisfy the following properties:

(1) Correctness: For all point functions 𝑓𝛼,𝛽 and every 𝑥 in

domain of 𝑓𝛼,𝛽 ,

𝑃𝑟

[
(𝑘0, 𝑘1) ← ΠGen (1𝜆, 𝛼, 𝛽) =⇒

𝑦𝑥
0
+ 𝑦𝑥

1
= 𝑓𝛼,𝛽 (𝑥) :

{
𝑦𝑥
𝑏
= ΠEval (𝑘𝑏 , 𝑥)

}
𝑏∈{0,1}

]
= 1

(2) Privacy: For every 𝑏 ∈ {0, 1}, there exists a simulator 𝑆𝑖𝑚

such that for any point function 𝑓𝛼,𝛽 , we have:{
𝑘𝑏 : (𝑘0, 𝑘1) ← ΠGen (1𝜆, 𝛼, 𝛽)

}
≈𝑐

{
Sim(1𝜆)

}
3.1 Doerner-shelat DPF Key Generation

Protocol
We use the Doerner-shelat DPF key generation protocol [30] and its

extension to the case of arithmetic payloads [1] (henceforth, called

the Ds protocol) as one of the key tools in our PIR construction.

We abstract out the key properties that we need from this protocol

below and later show that the Ds protocol (Algorithm 1) satisfies

all these properties.

2
To address this issue, a stronger security definition, Friends-and-Foes, was introduced

recently [3]. In our work, we do not provide this security guarantee.

Private Information Retrieval with Guaranteed Output Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

A DPF key generation protocol Φ is a two-party protocol be-

tween S0 and S1 with private inputs (⟨𝛼⟩B
0
, ⟨𝛽⟩0) ∈ [𝑁] × F and

(⟨𝛼⟩B
1
, ⟨𝛽⟩1) ∈ [𝑁] × F respectively. The output of the party S𝑏

(for each 𝑏 ∈ {0, 1}) at the end of the protocol is given by 𝑘𝑏 where

(𝑘0, 𝑘1) ← ΠGen (1𝜆, 𝛼, 𝛽), 𝛼 = ⟨𝛼⟩B
0
⊕ ⟨𝛼⟩B

1
and 𝛽 = ⟨𝛽⟩0 + ⟨𝛽⟩1.

Definition 3.3 (PIR-compatible DPF Key Gen Protocol). We say that

a DPF key generation protocol Φ is PIR-compatible if it satisfies the

following properties:

• Perfect Correctness: Φ computes the ΠGen functionality

with perfect correctness.

• Security: Φ securely implements the ΠGen functionality of

the DPF protocol against semi-honest adversaries.

• Black-Box: Φ makes black-box use of a PRG.

• Interaction via Oracles: There exists a specific two-party
non-cryptographic functionality G such that the only inter-

action between the parties 𝑃0 and 𝑃1 in the DPF protocol is

to securely compute this functionality G. Therefore, in the

G-oracle model, the protocol is non-interactive.
3

• Efficiency: The communication complexity of the proto-

col is poly(𝜆, 𝑛) (where 𝑛 = log𝑁) and the computational

complexity is poly(𝜆, 𝑁).

We define the view of a party in a PIR compatible DPF key

generation protocol.

Definition 3.4 (View of a party in a PIR-Compatible DPF Key
Gen). The view of a party in a PIR compatible DPF key gen pro-

tocol is given by its private input, private randomness, and the

(input,output) pair for each G-oracle call.

We make three observations about the view of a party in a PIR

compatible DPF key generation protocol.

Proposition 3.5.

(1) The size of the view of each party is at most poly(𝜆, 𝑛).
(2) Given a partial view that comprises of the input, private ran-

domness and the outputs of each G-oracle call, there is an
algorithm that runs in time poly(𝜆, 𝑁) and outputs the full
view.

(3) Given the view, the output obtained by the party in the DPF key
generation protocol is computable by a deterministic algorithm
that runs in time poly(𝜆, 𝑁).

Proof.

(1) The size of view of S𝑏 is sum of size of private input, ran-

domness, and the (input,output) pair for each G-oracle call.
Private input (⟨𝛼⟩B

𝑏
, ⟨𝛽⟩𝑏) is of size poly(𝑛) and randomness

is of size 𝑝𝑜𝑙𝑦 (𝜆). The total size of (input, output) pairs for all
G-oracle call is poly(𝜆, 𝑛). This follows from communication

efficiency of Φ and the fact that only communication that

happens is to compute G (Defn. 3.3). Therefore, size of view

is poly(𝜆, 𝑛).
(2) Given the partial view that comprises of the private input 𝑥 ,

randomness 𝑟 and the outputs of the G-oracle {out𝑖 }𝑖∈[𝐿] ,
the algorithm does the following.

3
By a non-interactive protocol in the G-oraclemodel, wemean that the only interaction

with the other party in the protocol is via the G oracle. That is, the parties only make

sequential calls to the G-oracle without any interaction with the other party.

(a) It initializes an empty list 𝐶 .

(b) For each 𝑖 ∈ [𝐿],
(i) It computes inp𝑖 = NextMsgFunc(𝑥, 𝑟,𝐶) where

NextMsgFunc denotes the next message function of the

party.

(ii) It adds (inp𝑖 , out𝑖) to 𝐶 .
It is easy to observe that the above procedure generates the

full view and the efficiency follows from the computational

complexity of the PIR-compatible protocol.

(3) It follows from correctness of the protocol and the bound on

the computational complexity.

□

We give a brief description of Ds protocol (Algorithm 1) and

prove that the Ds protocol is a PIR compatible DPF key generation

protocol by showing that it satisfies Definition 3.3.

Description of Ds protocol. Party 𝑃𝑏 has private inputs ⟨𝑟 ⟩B
𝑏
, ⟨𝑣⟩𝑏

and obtains DPF key 𝑘𝑏 corresponding to point function 𝑓𝑟,𝑣 . Prg is

a pseudorandom generator mapping 𝜆 bit strings to 2𝜆+2 bit strings.
Since 𝑟 is not known in clear, both parties compute Prg outputs for

all possible nodes at level 𝑗 ∈ [1, 𝑛] in step 3. The correction words

of DPF key {𝜎 𝑗 , 𝜏 𝑗,0, 𝜏 𝑗,1} are computed by secure 2PC in step 5.

This secure computation is modeled by non-cryptographic function-

ality G with

(
⟨𝑟 𝑗 ⟩B𝑏 , ⟨𝑧

𝑗,0⟩B
𝑏
, ⟨𝑧 𝑗,0⟩B

𝑏
, ⟨𝑧 𝑗,1⟩B

𝑏
, ⟨𝑧 𝑗,1⟩B

𝑏

)
as input and

(𝜎 𝑗 , 𝜏 𝑗,0, 𝜏 𝑗,1) as output of G-oracle call for party 𝑃𝑏 .
Since the payload is over F, 𝑃0, 𝑃1 compute𝑊0,𝑊1 using a pseu-

dorandom function Convert that maps 𝜆 bit strings to elements

in F. The final secure computation in step 10 is modeled by G
with (𝑊𝑏 ,𝑇𝑏) as input and 𝛾 as output of G-oracle call for party
𝑃𝑏 . The parties interact to compute the G-oracle outputs only. The
protocol has communication complexity poly(𝜆, 𝑛), computational

complexity poly(𝜆, 𝑁) and it is secure against semi-honest adver-

sary. The corresponding ΠEval protocol is given in appendix A for

completeness. For more details, refer to [1, 30].

Lemma 3.6. The Ds protocol satisfies Definition 3.3.

Proof.

(1) Perfect Correctness: We give description of ΠEval in ap-

pendix A. The ΠEval procedure of the scheme remains the

same as that of the Ds protocol with Boolean payloads pre-

sented in [30], along with an additional step to account for

the arithmetic conversion in step 10 of Algorithm 1. Borrow-

ing notation and assuming honestly generated keys 𝑘𝑏 , 𝑃𝑏
performs the final correction operation as follows to obtain

shares of output for input 𝑥 ∈ [𝑁]

(−1)𝑏
(
Convert

(
𝑆
𝑛,𝑥

𝑏

)
+ 𝑡𝑛,𝑥

𝑏
· 𝛾
)

Substituting the values from step 10, we get

output = ΠEval (0, 𝑘0, 𝑥) + ΠEval (1, 𝑘1, 𝑥)
= (𝑐𝑛,𝑥

0
− 𝑐𝑛,𝑥

1
) + (𝑡𝑛,𝑥

0
− 𝑡𝑛,𝑥

1
) · 𝛾

where 𝑐
𝑛,𝑥

𝑏
= Convert

(
𝑆
𝑛,𝑥

𝑏

)
.

Case 1: 𝑥 ≠ 𝑟 . If 𝑥 ≠ 𝑟 then 𝑐
𝑛,𝑥
0

= 𝑐
𝑛,𝑥
1

, 𝑡
𝑛,𝑥
0

= 𝑡
𝑛,𝑥
1

and output

is 0.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Algorithm 1: Distributed Keygen with Arithmetic Shares

Input: Each party 𝑃𝑏 for 𝑏 ∈ {0, 1} holds additive shares
⟨𝑟 ⟩B

𝑏
of 𝑟 ∈ {0, 1}𝑛 and ⟨𝑣⟩𝑏 of 𝑣 ∈ F.

Output: DPF keys for 𝑓𝑟,𝑣 .
Each party 𝑃𝑏 performs the following.

1 Sample 𝑆
0,0

𝑏
∈ {0, 1}𝜆 and set 𝑡

0,0

𝑏
= 𝑏.

2 for 𝑗 = 1 to 𝑛 do
3 For all ℓ ∈ [0, 2𝑗−1), compute{(

𝑆
𝑗,2ℓ

𝑏
∥𝑡 𝑗,2ℓ
𝑏
∥𝑆 𝑗,2ℓ+1

𝑏
∥𝑡 𝑗,2ℓ+1
𝑏

)}
=

{
Prg

(
𝑆
𝑗−1,ℓ
𝑏

)}
.

4 Compute

(
⟨𝑧 𝑗,0⟩B

𝑏
, ⟨𝑧 𝑗,0⟩B

𝑏
, ⟨𝑧 𝑗,1⟩B

𝑏
, ⟨𝑧 𝑗,1⟩B

𝑏

)
=⊕

ℓ

(
𝑆
𝑗,2ℓ

𝑏
∥𝑡 𝑗,2ℓ
𝑏
∥𝑆 𝑗,2ℓ+1

𝑏
∥𝑡 𝑗,2ℓ+1
𝑏

)
.

5 Secure Computation:
- Inputs: Boolean sharing of 𝑟 𝑗 and

(
𝑧 𝑗,0, 𝑧 𝑗,0, 𝑧 𝑗,1, 𝑧 𝑗,1

)
.

- Compute:

𝜎 𝑗 ← ⟨𝑧 𝑗,𝑟 𝑗 ⟩B
0
⊕ ⟨𝑧 𝑗,𝑟 𝑗 ⟩B

1

⟨𝜏 𝑗,0⟩B
𝑏
← ⟨𝑧 𝑗,0⟩B

𝑏
⊕ ⟨𝑟 𝑗 ⟩B𝑏 ⊕ 𝑏

⟨𝜏 𝑗,1⟩B
𝑏
← ⟨𝑧 𝑗,1⟩B

𝑏
⊕ ⟨𝑟 𝑗 ⟩B𝑏

- Output 𝐶𝑊 𝑗 =
(
𝜎 𝑗 , 𝜏 𝑗,0, 𝜏 𝑗,1

)
to both.

6 Compute

{
𝑆
𝑗,ℓ

𝑏

}
ℓ
=

{
𝑆
𝑗,ℓ

𝑏
⊕ 𝑡 𝑗−1,⌊ℓ/2⌋

𝑏
· 𝜎 𝑗

}
ℓ
.

7 Compute

{
𝑡
𝑗,ℓ

𝑏

}
ℓ
=

{
𝑡
𝑗,ℓ

𝑏
⊕ 𝑡 𝑗−1,⌊ℓ/2⌋

𝑏
· 𝜏 𝑗,Lsb(ℓ)

}
ℓ
.

8 end

9 Compute𝑊𝑏 =
∑

ℓ∈[0,2𝑛)
Convert

(
𝑆
𝑛,ℓ

𝑏

)
,𝑇𝑏 =

∑
ℓ∈[0,2𝑛)

𝑡
𝑛,ℓ

𝑏

10 Secure Computation:
- Inputs: 𝑇𝑏 ,𝑊𝑏 and arithmetic sharing of 𝑣 .

- Compute:

𝑞 = 1 if 𝑇1 > 𝑇0, 0 otherwise.

𝛾 ← (−1)𝑞 (𝑣 −𝑊0 +𝑊1)
- Output 𝛾 to both.

11 Output 𝑘𝑏 ←
(
𝑆
0,0

𝑏
,
{
𝐶𝑊 𝑗

}
𝑗∈[1,𝑛] , 𝛾

)
.

Case 2: 𝑥 = 𝑟 . WLOG assume that 𝑡
𝑛,𝑥
0

= 1 and 𝑡
𝑛,𝑥
1

= 0. Now

we have

output = (𝑐𝑛,𝑥
0
− 𝑐𝑛,𝑥

1
) + (𝑣 −𝑊0 +𝑊1)

Since𝑊1 −𝑊0 =
∑
ℓ∈[0,2𝑛) (𝑐𝑛,ℓ1

− 𝑐𝑛,ℓ
0
) = (𝑐𝑛,𝑥

1
− 𝑐𝑛,𝑥

0
) as

𝑐
𝑛,ℓ
0

= 𝑐
𝑛,ℓ
1

for all ℓ ≠ 𝑥 , we get output = 𝑣 . Hence the Ds

protocol computes ΠGen with perfect correctness.

(2) Security: The parties do not gain any additional information

other than the DPF key. In semi honest setting, the view of

each party can be simulated using the final output key and

the protocol is secure. [1, 30]

(3) Black-Box: The parties 𝑃0 and 𝑃1 only use black-box oracle

calls to Prg and Convert.
(4) Interaction Via Oracles: The only interaction that occurs

between 𝑃0 and 𝑃1 in the protocol is in the secure computa-

tions of step 5 and step 10. Both these computations involve

only arithmetic and XOR operations which can be modeled

as non-cryptographic functionality G (for a formal descrip-

tion of G, see Appendix B). Hence, all communication occurs

only in the secure computation of functionality G.
(5) Efficiency. The total number of PRG calls required is 𝑂 (𝑁),

since the local computation requires XOR to be performed

over all nodes in each layer of DPF tree. There are𝑛+1 secure
computations each requiring communication of poly(𝜆). It
follows that the communication cost and computational cost

of the protocol are poly(𝑛, 𝜆) and poly(𝑁, 𝜆) respectively,
with 𝑁 being the database size and 𝑛 = log𝑁 .

We conclude that the Ds protocol is PIR-compatible DPF key gen

protocol. □

4 PROTOCOL FOR PIR WITH GOD
In this section, we make use of a PIR compatible DPF Key Gen proto-

col Φ to construct a PIR protocol between a client and three servers

that satisfies guaranteed output delivery. We then instantiate Φ
with Ds protocol and report concrete costs of our PIR protocol.

Description of the Protocol. We give the formal description of the

protocol in Algorithm 2. Our protocol uses PIR-compatible DPF

key generation from Ds [30] as defined in Definition 3.3. Let 𝐷 be

the database held by the servers S0,S1,S2 with 𝑁 = 2
𝑛
entries.

Here we consider the database entries in a field F of size 2
𝜅
for

statistical security parameter 𝜅. Later we show in Section 4.3 how

our scheme can be naturally extended to databases with arbitrarily

large entries.

Offline Phase. First, S2 picks a random 𝑟 ∈ [𝑁] and 𝛼 ∈ F. We

would be working with a DPF for function 𝑓𝑟,(1,𝛼) . S2 generates
secret shares of 𝑟 and 𝑣 = (1, 𝛼) that would be the private inputs

of S0 and S1 in the distributed key generation. Next, S2 runs the
protocol Φ locally on these inputs to generate the two views view0

and view1 corresponding to S0 and S1. Now, S2 sends the partial
view in Φ consisting of the inputs, private randomness, and outputs

to G-oracle calls in view𝑏 to S𝑏 for 𝑏 ∈ {0, 1}.
Now given the partial view, S𝑏 creates the full view, denoted by

view𝑏 , locally (see Proposition 3.5 (2)). And given the full view, S𝑏
computes its share of the function key 𝑘𝑏 (see Proposition 3.5 (3)).

Next, S𝑏 evaluates the function key 𝑘𝑏 on the whole domain. That

is, it obtains (⟨𝑧𝑥 ⟩𝑏 ∥⟨𝑦𝑥 ⟩𝑏) = ΠEval (𝑘𝑏 , 𝑥) for all 𝑥 ∈ [𝑁].
As is clear, the offline phase has a single round of messages

from S2 to S0,S1 of size O(𝜆𝑛). The computational complexity of

all the servers is O(𝑁) PRG calls. Note that the offline phase is

independent of contents of 𝐷 .

Online Phase. A client comes in with input 𝑖 ∈ [𝑁]. Since one
of the servers can be malicious, the first step is to ensure that S0
and S1 are indeed holding a DPF key for a special point 𝑟 with

payload (1, 𝛼) for some 𝛼 . We want the client to verify this without

doing any cryptographic operations. For this, the client checks

for consistency of the two views as reported by S0,S1 with the

one claimed by S2. If there is an inconsistency between reported

views of S2 and S𝑏 with 𝑏 ∈ {0, 1}, it is clear that one of them is

cheating and hence, S
1⊕𝑏 is the honest party that client can rely

upon. However, it does not suffice that the viewsmatch. Amalicious

S2 can compute G-oracle calls maliciously resulting in incorrect

Private Information Retrieval with Guaranteed Output Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Algorithm 2: PIR with Guaranteed Output Delivery

Input: C holds 𝑖 ∈ [𝑁] and S𝑏 holds 𝐷 ∈ F𝑁 where

𝑏 ∈ {0, 1, 2}, 𝑁 = 2
𝑛
.

Output: C outputs 𝐷 [𝑖] ∈ F.
Offline phase

1 S2 samples random 𝑟 ← [𝑁], 𝛼 ← F.
2 S2 generates (⟨𝑟 ⟩B

0
, ⟨𝑟 ⟩B

1
) and (⟨𝑣⟩0, ⟨𝑣⟩1) as Boolean shares

of 𝑟 and arithmetic shares of (1, 𝛼) ∈ F2 respectively.
3 S2 runs the protocol Φ on inputs (⟨𝑟 ⟩B

0
, ⟨𝑣⟩0) and

(⟨𝑟 ⟩B
1
, ⟨𝑣⟩1) in its “head" and generates the view of 𝑃0

given by view0 and the view of 𝑃1 given by view1 in the

protocol.

4 For each 𝑏 ∈ {0, 1}, S2 sends the partial view comprising of

the private input, the private randomness and the outputs

of each G-oracle call in view𝑏 to S𝑏 . Note that S2 does
not send the inputs to each G-oracle call.

5 From the partial view obtained from S2, for each 𝑏 ∈ {0, 1},
S𝑏 generates the rest of the view. Let us call the updated

full view by view𝑏 and let 𝑘𝑏 be the output obtained in

view𝑏 .

6 for 𝑏 ∈ {0, 1} do
7 for 𝑥 ∈ [𝑁] do
8 S𝑏 computes ⟨𝑧𝑥 ⟩𝑏 ∈ {0, 1}, ⟨𝑦𝑥 ⟩𝑏 ∈ F as

(⟨𝑧𝑥 ⟩𝑏 ∥⟨𝑦𝑥 ⟩𝑏) = ΠEval (𝑘𝑏 , 𝑥).
9 end

10 end
Online phase

11 S2 sends (view0, view1) to C and for each 𝑏 ∈ {0, 1}, S𝑏
sends view𝑏 to C.

12 On receving the views from {S𝑗 } 𝑗∈{0,1,2} , C collects the set

{(inpℓ , outℓ)}ℓ∈[𝐿] as the sequence of (input,output)
values to each G-oracle call in (view0, view1).

13 C identifies honest party S𝑇 as follows:

if ∃𝑏 ∈ {0, 1} s.t. view𝑏 ≠ view𝑏 , then S𝑇 = S𝑏⊕1
else if ∃ℓ ∈ [𝐿] s.t. outℓ ≠ G(inpℓ), then S𝑇 = S0

If S𝑇 is identified, go to step 18, continue otherwise.

14 C computes (𝛼, 𝑟) from (view0, view1) and sends (𝑖 − 𝑟) to
party S0,S1.

15 For each 𝑏 ∈ {0, 1}, S𝑏 computes :

⟨𝑧⟩𝑏 =
∑︁

𝑥∈[𝑁]
⟨𝑧𝑥 ⟩𝑏 · 𝐷 [𝑥 + (𝑖 − 𝑟)]

⟨𝑦⟩𝑏 =
∑︁

𝑥∈[𝑁]
⟨𝑦𝑥 ⟩𝑏 · 𝐷 [𝑥 + (𝑖 − 𝑟)]

and sends ⟨𝑧⟩𝑏 , ⟨𝑦⟩𝑏 to C.
16 C computes 𝑧 = ⟨𝑧⟩0 + ⟨𝑧⟩1 and 𝑦 = ⟨𝑦⟩0 + ⟨𝑦⟩1. It then

checks if 𝛼 · 𝑧 = 𝑦.

17 If the check passes, C outputs 𝐷 [𝑖] = 𝑧; else, it identifies

trusted party S𝑇 = S2 and goes to step 18.

18 C sends 𝑖 to S𝑇 and receives 𝐷 [𝑖].

keys while ensuring that the consistency check passes. To catch

this attack, the client also checks the consistency of inputs and

outputs of G-oracle calls as reported by S2. If this check fails, it is

clear that S2 is malicious and hence, S0,S1 are honest. Note that
since G is non-cryptographic, the client does not need to do any

cryptographic operations.

The client proceeds to the next step if all the above consistency

checks pass. Next, the client sends (𝑖 − 𝑟) to S0,S1, where 𝑟 is com-

puted from view0, view1. Now the servers rotate the database based

on (𝑖 − 𝑟) and take an inner-product with {(⟨𝑧𝑥 ⟩𝑏 ∥⟨𝑦𝑥 ⟩𝑏)}𝑥∈[𝑁] ,
to get (⟨𝑧⟩𝑏 , ⟨𝑦⟩𝑏) that is sent back to the client. The client checks

the validity of MAC, i.e., whether 𝑧 · 𝛼 = 𝑦. If the check fails, then

one of S0,S1 is cheating and the client identifies S2 as the honest
party.

Hence, in our protocol, either all checks pass and the client

outputs 𝑧 or it has identified an honest party. In the latter case, it

sends 𝑖 to the honest server to learn correct 𝐷 [𝑖] reliably. Thus,
achieving guaranteed output delivery with one malicious server.

Recall that it is allowed for client to send index to identified honest

party in clear and this does not violate the definition of simulation

based security for MPC protocols (Section 2.1).

Remark: The Ds protocol is such that the full view creation from

the partial view itself provides the evaluation of the function key

on all points. That is, as an optimization, the evaluation phase need

not be done separately. Hence, the PRG invocations done during

key generation suffice.

We prove the following theorem.

Theorem 4.1. Assuming that Φ is a PIR-compatible DPF key gen-
eration protocol (see Definition 3.3), the construction given in Algo-
rithm 2 satisfies Definition 2.1. The communication in offline phase
is 2𝑛(𝜆 + 3) + 𝜆 + 8 log |F| bits and 1 round. The communication in
online phase is 11𝑛𝜆 + 28𝑛 + 4𝜆 + 26 log |F| and 3 rounds.

4.1 Proof of Theorem 4.1
The efficiency requirements of the protocol follow directly from

Proposition 3.5. We now prove the security property. We consider

two cases.

Case-1: S2 is the corrupted server. In this case, we first observe

that if any of the checks described in Step 13 do not pass, then

one of S0 or S1 is designated as the trusted server S𝑇 . In this case,

the output of the real and the ideal experiments are identically

distributed. Hence, let us assume that these two checks pass.

This means that for each 𝑏 ∈ {0, 1}, view𝑏 = view𝑏 and for each

ℓ ∈ [𝐿], outℓ = G(inpℓ). Since S0 and S1 are honest servers, it

follows via a standard induction on the number of calls to G that

(view0, view1) is correctly computed by S2. In other words, it is

consistent with the inputs, randomness and the outputs of correctly

computed G-oracle calls. This implies that check done in Step 16

passes with probability 1 (this follows from the perfect correctness

of the protocol Φ). Thus, the client correctly obtains 𝐷 [𝑖] and never
designates S2 as the trusted server S𝑇 . We note that the view of the

server S2 is independent of 𝑖 and hence, it is trivially simulatable.

Case-2: S𝑏 for some 𝑏 ∈ {0, 1} is the corrupted server. In this

case,S2 is honest and hence, (view0, view1) are correctly computed.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Therefore, for each ℓ ∈ [𝐿], it follows that outℓ = G(inpℓ). If there
exists a 𝑏 ∈ {0, 1} such that view𝑏 ≠ view𝑏 , then it follows that S𝑏
is the corrupt server. In this case, we designate S

1⊕𝑏 as the honest

server and the real and ideal experiments are identically distributed.

Hence, let us assume that the checks described in Step 13 pass. For

this case, we prove security by a sequence of hybrids.

• Hyb
0
: This corresponds to the real execution of the protocol.

• Hyb
1
: In this hybrid, instead of performing the checks de-

scribed in Step 16, we check if

⟨𝑧⟩𝑏 =
∑︁

𝑥∈[𝑁]
⟨𝑧𝑥 ⟩𝑏 · 𝐷 [𝑥 + (𝑖 − 𝑟)]

⟨𝑦⟩𝑏 =
∑︁

𝑥∈[𝑁]
⟨𝑦𝑥 ⟩𝑏 · 𝐷 [𝑥 + (𝑖 − 𝑟)]

If not, we abort. Note that if the above check passes, then

it follows from the perfect correctness of Φ that check de-

scribed in Step 16 also passes. We now argue that the con-

verse holds except with negligible probability.

We first observe that there is an unique value of 𝛼 such that

the check described in Step 16 passes, but the above check

does not pass. In particular, if (⟨𝑧⟩𝑏 , ⟨𝑦⟩𝑏) is the output of
the correct computation and (⟨𝑧′⟩𝑏 , ⟨𝑦′⟩𝑏) is the incorrect
output produced by S𝑏 that passes the check in Step 16,

then 𝛼 =
⟨𝑦⟩𝑏−⟨𝑦′ ⟩𝑏
⟨𝑧⟩𝑏−⟨𝑧′ ⟩𝑏 . In other words, we can compute the

value of 𝛼 . However, it follows from the semi-honest security

of Φ that 𝛼 cannot be computed except with probability

1/|F| + negl(𝜆). To see why this is the case, we first generate

the partial view sent to S𝑏 using the simulator for Φ. It
follows from the security of Φ that except with negligible

probability, S𝑏 still produces an incorrect evaluation that

passes the check in Step 16 and hence, we would still be able

to compute the value of 𝛼 . Now, in the modified distribution

𝛼 is randomly chosen and independent of view of S𝑏 . Hence,
the probability of computing 𝛼 in this modified distribution

is at most 1/|F|. Thus, Hyb
1
and Hyb

2
are computationally

indistinguishable.

• Hyb
2
: In this hybrid, we generate the partial view sent by

S2 to S𝑏 using the simulator for Φ instead of computing it

honestly as per the protocol specification. It follows from the

semi-honest security of the protocol Φ that Hyb
1
and Hyb

2

are computationally indistinguishable. Note that the view of

S𝑏 in Hyb
2
is independent of 𝑖 as 𝑟 is uniformly distributed.

If the check described in Hyb
1
passes, then it is easy to see

that the client obtains the correct 𝐷 [𝑖] as 𝑆
1⊕𝑏 is honest. This

shows that the real and the ideal experiments are computationally

indistinguishable with Hyb
2
as the ideal experiment.

4.2 Concrete Efficiency
Instantiating keygen protocol Φ with Ds protocol, we give the

concrete efficiency of our PIR protocol.

Computation: In offline phase, there are a total of𝑁+𝑁
⌈
log |F |
𝜆+1

⌉
−

1 PRG invocations by each server S𝑗 , 𝑗 ∈ {0, 1, 2}. When we set

logF ≈ 64, we get 2𝑁 − 1 PRG calls. According to description of

algorithm 2, 𝑃𝑏 computes output (⟨𝑧𝑥 ⟩𝑏 ∥⟨𝑦𝑥 ⟩𝑏) = ΠEval (𝑘𝑏 , 𝑥) for
𝑏 ∈ {0, 1}, 𝑥 ∈ [𝑁]. This would require more AES calls however

the output can be directly computed from the view view𝑏 and no

extra AES calls are required for ΠEval.

In the online phase, S0,S1 compute inner product of shares of

point function output with database requiring𝑂 (𝑁) multiplications

and additions over F. There are no cryptographic operations in

online phase.

Lightweight client: The computational complexity of client is

𝑂 (𝑛). The client only computes G which is non-cryptographic

(Definition 3.3) making it extremely lightweight.

Communication: In offline phase, S2 sends partial view of size

𝑛(𝜆+3) +𝜆+4 log |F| bits to both S0,S1. There is only server-server
communication in offline phase.

In the online phase S2 sends (view0, view1) and {S𝑏 }𝑏∈{0,1}
sends view𝑏 to C where |view𝑏 | = 𝑛(3𝜆 + 7) + 𝜆 + 6 log |F| bits.
Outputs of G, {𝑜𝑢𝑡ℓ }ℓ∈[𝐿] are common in view0, view1 so S2 can
send just one copy of {𝑜𝑢𝑡ℓ }ℓ∈[𝐿] . C sends (𝑖 − 𝑟) to S0,S1 and S𝑏
sends (⟨𝑧⟩𝑏 , ⟨𝑦⟩𝑏)𝑏∈{0,1} to C. The total communication is 11𝑛𝜆 +
28𝑛+4𝜆+26 log |F| bits and 3 rounds. IfS0 orS1 behavesmaliciously

during online phase, C queries 𝐷 [𝑖] from S2 in clear increasing the

rounds to 5. There is only client-server communication in online

phase.

4.3 Extension to large database entries
The previous protocol was over databases with entries in F. This
protocol can be naturally extended to PIR over database with arbi-

trary size entries. Statistical security and computational security

parameters are same as before. Database 𝐷 with entry size 𝑘 bits

can be divided into 𝑚 = ⌈𝑘/𝜅⌉ databases of entry size 𝜅 bits on

which servers run online phase of protocol. Each of these databases

have entries in F (size of F is 2𝜅) and servers compute inner product

on each of these databases individually and send shares for client

to reconstruct the correct entry.

(1) The offline phase remains the same as described in Algo-

rithm 2.

(2) Next in the online phase, servers 𝑆𝑏 , 𝑏 ∈ {0, 1} compute (for

each database 𝐷 𝑗 , 𝑗 ∈ [𝑚])

⟨𝑧⟩ 𝑗
𝑏
=

∑︁
𝑥∈[𝑁]

⟨𝑧𝑥 ⟩𝑏 · 𝐷 𝑗 [𝑥 + (𝑖 − 𝑟)]

⟨𝑦⟩ 𝑗
𝑏
=

∑︁
𝑥∈[𝑁]

⟨𝑦𝑥 ⟩𝑏 · 𝐷 𝑗 [𝑥 + (𝑖 − 𝑟)]

(3) The servers 𝑆𝑏 send {⟨𝑧⟩ 𝑗
𝑏
, ⟨𝑦⟩ 𝑗

𝑏
} 𝑗∈[𝑚] to the client.

(4) The client reconstructs 𝑧 𝑗 , 𝑦 𝑗 for all 𝑗 and identifies S2 as
honest party if for any 𝑗 , 𝛼 · 𝑧 𝑗 ≠ 𝑦 𝑗 .

(5) If the check above passes, client outputs 𝑧 = 𝑧0∥ . . . ∥𝑧𝑚−1 ∈
Z
2
𝑘 i.e. concatenation of binary {𝑧 𝑗 } 𝑗∈𝑚 .

Security. Security follows directly from the base protocol. The ex-

tended protocol can be seen as PIR on ⌈𝑘/𝜅⌉ databases of entry size
𝜅 bits. The security follows from security of PIR on each database

which follows from security of our main protocol.

Concrete Cost. Here we summarize the cost of this modified pro-

tocol in a similar manner as above.

Private Information Retrieval with Guaranteed Output Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Computation cost: The offline computation is dominated by

2𝑁−1 PRG calls same as before. In the online phase, servers compute

𝑂 (𝑚𝑁) additions and multiplications over F where𝑚 = ⌈𝑘/𝜅⌉.

Communication cost: In the offline phase,S2 sends a partial view
of size 𝑛(𝜆 + 3) + 𝜆 + 4 log |F| bits to both S0,S1 each.

In the online phase, servers send their view to client of size

𝑛(3𝜆 + 7) + 𝜆 + 6 log |F| bits. Client sends (𝑖 − 𝑟) to S0,S1 : 2𝑛

bits. S𝑏 sends {⟨𝑧⟩ 𝑗
𝑏
, ⟨𝑦⟩ 𝑗

𝑏
} 𝑗∈[𝑛] communicating 2𝑘 bits each. Total

communication is 11𝑛𝜆 + 28𝑛 + 4𝜆 + 22 log |F| + 4𝑘 bits.

5 IMPLEMENTATION AND EVALUATION
In this section, we discuss the performance of our PIR protocol. We

implement both our protocol and its extension to larger database
4
.

We also compare our protocol to baseline 3-server PIR protocols

with GOD, described in Section 1, that can be obtained based on

state-of-the-art single server PIR protocols.

Protocol Parameters: We set the computational security param-

eter 𝜆 = 128. We choose F = Z𝑝 where 𝑝 is a 64 bit prime. We

implement our protocol for database with entry size 8 B and proto-

col extension to larger database for database with entry size 1KB.

For database with 1KB entry, we divide database entries into chunks

of 8 B. We benchmark online, offline execution time and communi-

cation. We also benchmark client runtime i.e. the time it takes for

client to verify views sent by server.

Implementation Details: We implement the PIR protocol in C++.

We use 128-bit block size and AES − 128 as our PRG function. We

use the implementation of GroupElement class from [55] for inner

product computations in the online phase. We use OpenMP to

manage multi-threading and local AES computations were done

using the cryptoTools [59] library. We use multi-threading in local

AES calls during the offline phase and inner product with database

in the online phase.

Experimental Setup: We ran all 4 parties (client and three servers)

on a single machine with 32 core Intel Xeon 2.6GHz CPUwith 64GB

RAM. Each of the 3 servers use 8 threads for multithreading while

the client uses a single thread. We configure a LAN connection with

bandwidth 800 Mbps and a WAN connection with bandwidth 20

Mbps using linux tc tool. Since there are only 4 rounds and < 10KB

communication (in total), the performance of our protocol is the

same in both LAN and WAN setting.

5.1 Performance
Table 1 reports the communication cost of our protocol for different

database configurations. Table 2 reports our end-to-end perfor-

mance of both offline and online phase for our PIR protocol in

the LAN and WAN setting for databases with entry sizes 8B and

1KB. Since the offline phase is independent of database size, we

do not report performance of offline phase for 8B-entry and 1KB-

entry database separately. All the experiments are run 10 times and

average values are reported.

Offline Phase: The offline phase is independent of database entry

size. The communication in the offline phase (see Table 1) is only

4
Our code will be made available upon publication of the paper.

Table 1: Communication (KB) of PIR protocol for database
with N entries of 8B and 1KB.

N Offline

Online

8B entry 1KB entry

2
16

0.67 3.19 7.16

2
17

0.70 3.39 7.36

2
18

0.74 3.58 7.54

2
19

0.77 3.76 7.73

2
20

0.81 3.95 7.91

2
21

0.84 4.13 8.10

2
22

0.88 4.32 8.28

2
23

0.91 4.50 8.47

2
24

0.95 4.69 8.66

Table 2: Runtime (ms) of PIR protocol for database with N
entries of size 8B and 1KB in LAN/WAN setting.

N Offline

Online Client

8B entry 1KB entry Time

2
16

41 2 19 1

2
17

80 3 32 1

2
18

152 4 63 1

2
19

295 6 99 1.1

2
20

577 11 179 1.1

2
21

1, 128 21 329 1.2

2
22

2, 215 40 643 1.2

2
23

4, 489 78 1, 309 1.2

2
24

8, 879 152 2, 618 1.3

one way, from S2 to S0,S1, for sending the partial view of DPF key

generation protocol which is poly(log𝑁, 𝜆) bits in size.

The computation in the offline phase is dominated by𝑂 (𝑁) PRG
calls by servers. In our implementation, S2 computes view of S0,S1
and then sends the partial view to the respective party who then

compute their complete view. This generation of views by S2 and
S0/S1 can further be parallelized if S2 sends parts of the partial
view as it computes the view instead of computing view entirely and

then sending it to S0,S1. This optimization would further reduce

the offline time by 1.5×.

Online Phase: The communication in the online phase (see Ta-

ble 1) is higher than in the offline phase and scales linearly with

database entry size. There is only client-server communication in

the online phase. For larger database entries, the communication

is dominated by ⟨𝑧⟩𝑏 , ⟨𝑦⟩𝑏 sent by S0,S1 to C which is 4× the

database entry size.

Our implementation results in a very fast online phase in which

S0,S1,S2 send their views to C for the consistency check and com-

pute the inner product of DPF outputs with the rotated database. For
database with entry size 1KB, we use multi-threading to compute

inner product with 8B chunks of database entries in parallel.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Client Time: This measures compute time on the client side

separately, i.e., the time taken by client to receive (inp, view) from
S0,S1,S2 and check for consistency before providing masked index

𝑖 . This client computation is independent of database entry size and

lightweight (≈ 1ms for all 2
16 ≤ 𝑁 ≤ 2

24
).

5.2 Comparison to other works
We compare our work to the baseline 3-server PIR solution that

can be obtained based on single server PIR as outlined earlier.

State-of-the-art single server PIR protocols like FrodoPIR [29] and

SPIRAL [52] provide privacy against malicious server but do not

guarantee correctness of output. As described in section 1, we can

obtain GOD by running 3 instances of single server PIR on 3 sep-

arate servers tolerating 1 malicious corruption. We refer to this

protocol as three server PIR with GOD based on single server PIR.
We run the implementation of FrodoPIR

5
and SPIRAL

6
available

online, in both LAN and WAN setting. Based on this single server

PIR, in order to extrapolate the performance of a 3-server PIR with

GOD security, we ignore any additional computational cost on the

client side, assume that the 3-servers can completely run all of their

computation in parallel at the same time (thus causing no further

overhead) and only account for 3× communication required to be

sent by the 3 servers to the client (which will affect performance

based on the network setting).

We compare our solution with those based on FrodoPIR and

SPIRAL on three different database sizes - 2
20×256B (256 MB), 2

18×
30KB (7.5 GB) and 2

14× 100KB (1.6 GB) and present our results in

Table 3. The total communication of our protocol is 306 − 4893 ×
lower than SPIRAL and 2242−4230× lower than FrodoPIR, while the
total run time is 2.3−146× faster than SPIRAL and 443−6036× faster
than FrodoPIR across network settings. Even when comparing only

online time, our protocol is 1.5 − 1878 × more communication

efficient and 2.2 − 37 × faster than the state-of-the-art. Hence our

protocol achieves GOD with high efficiency and the performance

doesn’t deteriorate even with bandwidth constrained client.

REFERENCES
[1] Amit Agarwal, Stanislav Peceny, Mariana Raykova, Phillipp Schoppmann, and

Karn Seth. 2022. Communication Efficient Secure Logistic Regression. IACR
Cryptol. ePrint Arch. (2022).

[2] A. Ali, T. Lepoint, S. Patel, M. Raykova, P. Schoppmann, K. Seth, and K. Yeo. 2021.

Communication–Computation Trade-offs in PIR. In USENIX Security Symposium.

1811–1828. https://eprint.iacr.org/2019/1483.pdf

[3] Bar Alon, Eran Omri, and Anat Paskin-Cherniavsky. 2020. MPC with Friends and

Foes. In Advances in Cryptology – CRYPTO 2020, Daniele Micciancio and Thomas

Ristenpart (Eds.). Springer International Publishing, Cham, 677–706.

[4] Andris Ambainis. 1997. Upper Bound on Communication Complexity of Private

Information Retrieval. In International Colloquium on Automata, Languages and
Programming.

[5] Sebastian Angel, Hao Chen, Kim Laine, and Srinath T. V. Setty. 2018. PIR with

Compressed Queries and Amortized Query Processing. 2018 IEEE Symposium on
Security and Privacy (SP) (2018), 962–979.

[6] Sebastian Angel, Hao Chen, Kim Laine, and Srinath T. V. Setty. 2018. PIR with

Compressed Queries and Amortized Query Processing. 2018 IEEE Symposium on
Security and Privacy (SP) (2018), 962–979.

[7] Sebastian Angel and Srinath T. V. Setty. 2016. Unobservable Communication

over Fully Untrusted Infrastructure. In USENIX Symposium on Operating Systems
Design and Implementation.

[8] Toshinori Araki, Assi Barak, Jun Furukawa, Tamar Lichter, Yehuda Lindell, Ariel

Nof, Kazuma Ohara, Adi Watzman, and Or Weinstein. 2017. Optimized Honest-

Majority MPC for Malicious Adversaries — Breaking the 1 Billion-Gate Per

5
https://github.com/brave-experiments/frodo-pir

6
https://github.com/menonsamir/spiral

Table 3: Comparison of this work to PIR protocols with GOD
based on single server PIR. Runtime is in seconds and com-
munication is in KB. The best values are marked in bold.

LAN Setting

Database Protocol

Offline Online

Time Comm. Time Comm.

2
20×256B

SPIRAL 0.75 43, 008 1.00 102

FrodoPIR 328.00 4, 731 0.30 15, 024

This work 0.58 0.81 0.16 8

2
18×30KB

SPIRAL 0.81 55, 296 16.80 300

FrodoPIR 7, 708.00 509, 952 4.30 3, 360

This work 0.15 0.74 1.16 124

2
14×100KB

SPIRAL 2.1 144, 384 4.03 606

FrodoPIR 1, 621.62 1, 701, 888 0.90 1, 152

This work 0.01 0.6 0.41 402

WAN Setting

Database Protocol

Offline Online

Time Comm. Time Comm.

2
20×256B

SPIRAL 17.13 43, 008 1.03 102

FrodoPIR 328.84 4, 731 6.03 15, 024

This work 0.58 0.81 0.16 8

2
18×30KB

SPIRAL 21.87 55, 296 16.92 300

FrodoPIR 7, 902.20 509, 952 5.58 3, 360

This work 0.15 0.74 1.16 124

2
14×100KB

SPIRAL 57.09 144, 384 4.26 606

FrodoPIR 2, 269.80 1, 701, 888 1.34 1, 152

This work 0.01 0.6 0.41 402

Second Barrier. In 2017 IEEE Symposium on Security and Privacy (SP). 843–862.
https://doi.org/10.1109/SP.2017.15

[9] Amos Beimel and Yuval Ishai. 2001. Information-Theoretic Private Information

Retrieval: A Unified Construction. Electron. Colloquium Comput. Complex. TR01
(2001).

[10] Amos Beimel, Yuval Ishai, and Eyal Kushilevitz. 2005. General constructions

for information-theoretic private information retrieval. J. Comput. Syst. Sci. 71
(2005), 213–247.

[11] Amos Beimel, Yuval Ishai, Eyal Kushilevitz, and Ilan Orlov. 2012. Share Conver-

sion and Private Information Retrieval. 2012 IEEE 27th Conference on Computa-
tional Complexity (2012), 258–268.

[12] Nikita Borisov, George Danezis, and Ian Goldberg. 2015. DP5: A Private Presence

Service. Proceedings on Privacy Enhancing Technologies 2015 (2015), 24 – 4.

[13] Elette Boyle, Niv Gilboa, and Yuval Ishai. 2016. Function Secret Sharing: Improve-

ments and Extensions (CCS ’16). Association for Computing Machinery, New

York, NY, USA, 1292–1303. https://doi.org/10.1145/2976749.2978429

[14] Elette Boyle, Niv Gilboa, and Yuval Ishai. 2019. Secure Computation with Prepro-

cessing via Function Secret Sharing. In Theory of Cryptography, Dennis Hofheinz
and Alon Rosen (Eds.). Springer International Publishing, Cham, 341–371.

[15] Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. 2019. Practical Fully Secure

Three-Party Computation via Sublinear Distributed Zero-Knowledge Proofs. In

Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security (London, United Kingdom) (CCS ’19). Association for Computing Ma-

chinery, New York, NY, USA, 869–886. https://doi.org/10.1145/3319535.3363227

[16] Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. 2020. Efficient Fully Secure

Computation via Distributed Zero-Knowledge Proofs. InAdvances in Cryptology –
ASIACRYPT 2020, Shiho Moriai and HuaxiongWang (Eds.). Springer International

Publishing, Cham, 244–276.

[17] Paul Bunn, Jonathan Katz, Eyal Kushilevitz, and Rafail Ostrovsky. 2020. Effi-

cient 3-Party Distributed ORAM. In Security and Cryptography for Networks:
12th International Conference, SCN 2020, Amalfi, Italy, September 14–16, 2020,
Proceedings (Amalfi, Italy). Springer-Verlag, Berlin, Heidelberg, 215–232. https:

//doi.org/10.1007/978-3-030-57990-6_11

https://eprint.iacr.org/2019/1483.pdf
https://doi.org/10.1109/SP.2017.15
https://doi.org/10.1145/2976749.2978429
https://doi.org/10.1145/3319535.3363227
https://doi.org/10.1007/978-3-030-57990-6_11
https://doi.org/10.1007/978-3-030-57990-6_11

Private Information Retrieval with Guaranteed Output Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

[18] Christian Cachin, Silvio Micali, and Markus Stadler. 1999. Computationally

Private Information Retrieval with Polylogarithmic Communication. In Advances
in Cryptology — EUROCRYPT ’99, Jacques Stern (Ed.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 402–414.

[19] Yan-Cheng Chang. 2004. Single Database Private Information Retrieval with Log-

arithmic Communication. In Information Security and Privacy: 9th Australasian
Conference, ACISP 2004, Sydney, Australia, July 13-15, 2004. Proceedings (Lecture
Notes in Computer Science, Vol. 3108), Huaxiong Wang, Josef Pieprzyk, and Vijay

Varadharajan (Eds.). Springer, 50–61. https://doi.org/10.1007/978-3-540-27800-

9_5

[20] Harsh Chaudhari, Ashish Choudhury, Arpita Patra, and Ajith Suresh. 2019. AS-

TRA: High Throughput 3PC over Rings with Application to Secure Prediction.

In Proceedings of the 2019 ACM SIGSAC Conference on Cloud Computing Security
Workshop (London, United Kingdom) (CCSW’19). Association for Computing

Machinery, New York, NY, USA, 81–92. https://doi.org/10.1145/3338466.3358922

[21] David Chaum, Claude Crépeau, and Ivan Damgard. 1988. Multiparty Uncondition-

ally Secure Protocols. In Proceedings of the Twentieth Annual ACM Symposium on
Theory of Computing (Chicago, Illinois, USA) (STOC ’88). Association for Comput-

ing Machinery, New York, NY, USA, 11–19. https://doi.org/10.1145/62212.62214

[22] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. 1995. Private Information Re-

trieval. In Proceedings of the 36th Annual Symposium on Foundations of Computer
Science (FOCS ’95). IEEE Computer Society, USA, 41.

[23] R Cleve. 1986. Limits on the Security of Coin Flips When Half the Processors

Are Faulty. In Proceedings of the Eighteenth Annual ACM Symposium on Theory
of Computing (Berkeley, California, USA) (STOC ’86). Association for Computing

Machinery, New York, NY, USA, 364–369. https://doi.org/10.1145/12130.12168

[24] Henry Corrigan-Gibbs and Dmitry Kogan. 2020. Private Information Retrieval

with Sublinear Online Time. In IACR Cryptology ePrint Archive.
[25] Ronald Cramer, Ivan Damgård, Daniel Escudero, Peter Scholl, and Chaoping

Xing. 2018. SPD Z2k: Efficient MPC Mod for Dishonest Majority. Springer-Verlag,

Berlin, Heidelberg, 769–798. https://doi.org/10.1007/978-3-319-96881-0_26

[26] Anders P. K. Dalskov, Daniel Escudero, and Marcel Keller. 2021. Fantastic Four:

Honest-Majority Four-Party Secure Computation With Malicious Security. In

30th USENIX Security Symposium, USENIX Security 2021, August 11-13, 2021,
Michael Bailey and Rachel Greenstadt (Eds.). USENIX Association, 2183–2200.

https://www.usenix.org/conference/usenixsecurity21/presentation/dalskov

[27] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and

Nigel P. Smart. 2013. Practical Covertly Secure MPC for Dishonest Majority

– Or: Breaking the SPDZ Limits. In Computer Security – ESORICS 2013, Jason
Crampton, Sushil Jajodia, and Keith Mayes (Eds.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 1–18.

[28] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias. 2012. Multiparty

Computation from Somewhat Homomorphic Encryption. In Proceedings of the
32nd Annual Cryptology Conference on Advances in Cryptology — CRYPTO 2012 -
Volume 7417. Springer-Verlag, Berlin, Heidelberg, 643–662. https://doi.org/10.

1007/978-3-642-32009-5_38

[29] Alex Davidson, Gonçalo Pestana, and Sofía Celi. 2023. FrodoPIR: Simple, Scalable,

Single-Server Private Information Retrieval. Proc. Priv. Enhancing Technol. 2023
(2023), 365–383.

[30] Jack Doerner and Abhi Shelat. 2017. Scaling ORAM for Secure Computation. In

Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017, Bhavani
Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu (Eds.). ACM, 523–535.

https://doi.org/10.1145/3133956.3133967

[31] Zeev Dvir and Sivakanth Gopi. 2016. 2-Server PIR with Subpolynomial Commu-

nication. J. ACM 63, 4, Article 39 (sep 2016), 15 pages. https://doi.org/10.1145/

2968443

[32] Klim Efremenko. 2009. 3-Query Locally Decodable Codes of Subexponential

Length (STOC ’09). Association for Computing Machinery, New York, NY, USA,

39–44. https://doi.org/10.1145/1536414.1536422

[33] Eric Fung, Georgios Kellaris, and Dimitris Papadias. 2015. Combining Differential

Privacy and PIR for Efficient Strong Location Privacy. In International Symposium
on Spatial and Temporal Databases.

[34] Craig Gentry and Shai Halevi. 2019. Compressible FHE with Applications to PIR.

In Theory of Cryptography - 17th International Conference, TCC 2019, Nuremberg,
Germany, December 1-5, 2019, Proceedings, Part II (Lecture Notes in Computer
Science, Vol. 11892), Dennis Hofheinz and Alon Rosen (Eds.). Springer, 438–464.

https://doi.org/10.1007/978-3-030-36033-7_17

[35] Craig Gentry and Zulfikar Ramzan. 2005. Single-Database Private Informa-

tion Retrieval with Constant Communication Rate. In Proceedings of the 32nd
International Conference on Automata, Languages and Programming (Lisbon,

Portugal) (ICALP’05). Springer-Verlag, Berlin, Heidelberg, 803–815. https:

//doi.org/10.1007/11523468_65

[36] Niv Gilboa and Yuval Ishai. 2014. Distributed Point Functions and Their Applica-

tions. In Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Copen-
hagen, Denmark, May 11-15, 2014. Proceedings (Lecture Notes in Computer Science,
Vol. 8441), Phong Q. Nguyen and Elisabeth Oswald (Eds.). Springer, 640–658.

https://doi.org/10.1007/978-3-642-55220-5_35

[37] Matthew Green, Watson Ladd, and Ian Miers. 2016. A Protocol for Privately

Reporting Ad Impressions at Scale. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (Vienna, Austria) (CCS
’16). Association for Computing Machinery, New York, NY, USA, 1591–1601.

https://doi.org/10.1145/2976749.2978407

[38] Daniel Günther, Maurice Heymann, Benny Pinkas, and Thomas Schneider. 2022.

GPU-accelerated PIR with Client-Independent Preprocessing for Large-Scale

Applications. In 31st USENIX Security Symposium (USENIX Security 22). USENIX
Association, Boston, MA, 1759–1776. https://www.usenix.org/conference/

usenixsecurity22/presentation/gunther

[39] Trinabh Gupta, Natacha Crooks, Whitney Mulhern, Srinath Setty, Lorenzo Alvisi,

and Michael Walfish. 2016. Scalable and Private Media Consumption with Pop-

corn (NSDI’16). USENIX Association, USA, 91–107.

[40] Alexandra Henzinger, Matthew M. Hong, Henry Corrigan-Gibbs, Sarah Meikle-

john, and Vinod Vaikuntanathan. 2023. One Server for the Price of Two: Simple

and Fast Single-Server Private Information Retrieval. USENIX Security Sympo-

sium. (2023).

[41] Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrovsky. 2005. Sufficient Conditions

for Collision-Resistant Hashing. In Theory of Cryptography Conference.
[42] Yuval Ishai, Eyal Kushilevitz, Manoj Prabhakaran, Amit Sahai, and Ching-Hua

Yu. 2016. Secure Protocol Transformations. In Advances in Cryptology – CRYPTO
2016, Matthew Robshaw and Jonathan Katz (Eds.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 430–458.

[43] Toshiya Itoh and Yasuhiro Suzuki. 2008. New Constructions for Query-Efficient

Locally Decodable Codes of Subexponential Length. ArXiv abs/0810.4576 (2008).

[44] Jonathan Katz and Luca Trevisan. 2000. On the Efficiency of Local Decoding

Procedures for Error-Correcting Codes. In Proceedings of the Thirty-Second Annual
ACM Symposium on Theory of Computing (Portland, Oregon, USA) (STOC ’00).
Association for Computing Machinery, New York, NY, USA, 80–86. https://doi.

org/10.1145/335305.335315

[45] Nishat Koti, Mahak Pancholi, Arpita Patra, and Ajith Suresh. 2021. SWIFT: Super-

fast and Robust Privacy-Preserving Machine Learning. In 30th USENIX Security
Symposium, USENIX Security 2021, August 11-13, 2021, Michael Bailey and Rachel

Greenstadt (Eds.). USENIX Association, 2651–2668. https://www.usenix.org/

conference/usenixsecurity21/presentation/koti

[46] Nishat Koti, Arpita Patra, Rahul Rachuri, and Ajith Suresh. 2021. Tetrad: Actively

Secure 4PC for Secure Training and Inference. IACR Cryptol. ePrint Arch. (2021),
755. https://eprint.iacr.org/2021/755

[47] E. Kushilevitz and R. Ostrovsky. 1997. Replication is not needed: single database,

computationally-private information retrieval. In Proceedings 38th Annual Sym-
posium on Foundations of Computer Science. 364–373. https://doi.org/10.1109/

SFCS.1997.646125

[48] Albert Kwon, David Lazar, Srinivas Devadas, and Bryan Ford. 2015. Riffle: An

Efficient Communication SystemWith Strong Anonymity. Proceedings on Privacy
Enhancing Technologies 2016 (08 2015). https://doi.org/10.1515/popets-2016-0008

[49] Wei-Kai Lin, Ethan Mook, and Daniel Wichs. 2022. Doubly Efficient Private

Information Retrieval and Fully Homomorphic RAM Computation from Ring

LWE. IACR Cryptol. ePrint Arch. (2022), 1703. https://eprint.iacr.org/2022/1703

[50] Yiping Ma, Ke Zhong, Tal Rabin, and Sebastian Angel. 2022. Incremen-

tal Offline/Online PIR. In 31st USENIX Security Symposium (USENIX Security
22). USENIX Association, Boston, MA, 1741–1758. https://www.usenix.org/

conference/usenixsecurity22/presentation/ma

[51] Carlos Aguilar Melchor, Joris Barrier, Laurent Fousse, and Marc-Olivier Killijian.

2016. XPIR : Private Information Retrieval for Everyone. Proceedings on Privacy
Enhancing Technologies 2016 (2016), 155 – 174.

[52] Samir Menon and David J. Wu. 2022. SPIRAL: Fast, High-Rate Single-Server PIR

via FHE Composition. 2022 IEEE Symposium on Security and Privacy (SP) (2022),
930–947.

[53] Prateek Mittal, Femi Olumofin, Carmela Troncoso, Nikita Borisov, and Ian Gold-

berg. 2011. PIR-Tor: Scalable Anonymous Communication Using Private Infor-

mation Retrieval. In Proceedings of the 20th USENIX Conference on Security (San

Francisco, CA) (SEC’11). USENIX Association, USA, 31.

[54] Payman Mohassel, Mike Rosulek, and Ye Zhang. 2015. Fast and Secure Three-

Party Computation: The Garbled Circuit Approach (CCS ’15). Association for

Computing Machinery, New York, NY, USA, 591–602. https://doi.org/10.1145/

2810103.2813705

[55] mpc msri. 2022. EzPC. https://github.com/mpc-msri/EzPC.

[56] Muhammad Haris Mughees, Hao Chen, and Ling Ren. 2021. OnionPIR: Response

Efficient Single-Server PIR. Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security (2021).

[57] Peter Sebastian Nordholt and Meilof Veeningen. 2018. Minimising Communica-

tion in Honest-Majority MPC by Batchwise Multiplication Verification. InApplied
Cryptography and Network Security, Bart Preneel and Frederik Vercauteren (Eds.).

Springer International Publishing, Cham, 321–339.

[58] T. Rabin and M. Ben-Or. 1989. Verifiable Secret Sharing and Multiparty Protocols

with Honest Majority. In Proceedings of the Twenty-First Annual ACM Symposium
on Theory of Computing (Seattle, Washington, USA) (STOC ’89). Association for

https://doi.org/10.1007/978-3-540-27800-9_5
https://doi.org/10.1007/978-3-540-27800-9_5
https://doi.org/10.1145/3338466.3358922
https://doi.org/10.1145/62212.62214
https://doi.org/10.1145/12130.12168
https://doi.org/10.1007/978-3-319-96881-0_26
https://www.usenix.org/conference/usenixsecurity21/presentation/dalskov
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1145/3133956.3133967
https://doi.org/10.1145/2968443
https://doi.org/10.1145/2968443
https://doi.org/10.1145/1536414.1536422
https://doi.org/10.1007/978-3-030-36033-7_17
https://doi.org/10.1007/11523468_65
https://doi.org/10.1007/11523468_65
https://doi.org/10.1007/978-3-642-55220-5_35
https://doi.org/10.1145/2976749.2978407
https://www.usenix.org/conference/usenixsecurity22/presentation/gunther
https://www.usenix.org/conference/usenixsecurity22/presentation/gunther
https://doi.org/10.1145/335305.335315
https://doi.org/10.1145/335305.335315
https://www.usenix.org/conference/usenixsecurity21/presentation/koti
https://www.usenix.org/conference/usenixsecurity21/presentation/koti
https://eprint.iacr.org/2021/755
https://doi.org/10.1109/SFCS.1997.646125
https://doi.org/10.1109/SFCS.1997.646125
https://doi.org/10.1515/popets-2016-0008
https://eprint.iacr.org/2022/1703
https://www.usenix.org/conference/usenixsecurity22/presentation/ma
https://www.usenix.org/conference/usenixsecurity22/presentation/ma
https://doi.org/10.1145/2810103.2813705
https://doi.org/10.1145/2810103.2813705
https://github.com/mpc-msri/EzPC

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Functionality 2: G-oracle for Ds protocol
Input: 𝑃𝑏 , 𝑏 ∈ {0, 1}, inputs (𝑖, inp𝑏) where 𝑖 ∈ [1, 𝑛 + 1].
Output: 𝑃0, 𝑃1 learn 𝐶𝑊𝑖 for 𝑖 ∈ [1, 𝑛] or 𝛾 for 𝑖 = 𝑛 + 1.

1 if 𝑖 ∈ [1, 𝑛] then
2 Parse inp𝑏 =

{
⟨𝑟𝑖 ⟩B𝑏 , ⟨𝑧

𝑖,0⟩B
𝑏
, ⟨𝑧𝑖,1⟩B

𝑏
, ⟨𝑧𝑖,0⟩B

𝑏
, ⟨𝑧𝑖,1⟩B

𝑏

}
and

reconstruct the values from shares.

3 Compute 𝜎𝑖 , 𝜏𝑖,0, 𝜏𝑖,1 as follows:

𝜎𝑖 ← 𝑧𝑖,𝑟𝑖

𝜏𝑖,0 ← 𝑧𝑖,0 ⊕ 𝑟𝑖 ⊕ 1

𝜏𝑖,1 ← 𝑧𝑖,1 ⊕ 𝑟𝑖
4 Output 𝐶𝑊𝑖 =

{
𝜎𝑖 , 𝜏𝑖,0, 𝜏𝑖,1

}
to 𝑃0, 𝑃1.

5 else if 𝑖 = 𝑛 + 1 then
6 Parse inp𝑏 = {𝑇𝑏 ,𝑊𝑏 , ⟨𝑣⟩}.
7 Let 𝑞 = 1 if 𝑇1 > 𝑇0, 𝑞 = 0 otherwise.

8 Compute 𝛾 ← (−1)𝑞 (𝑣 −𝑊0 +𝑊1).
9 Output 𝛾 to 𝑃0, 𝑃1.

Computing Machinery, New York, NY, USA, 73–85. https://doi.org/10.1145/

73007.73014

[59] Peter Rindal. 2022. cryptoTools. https://github.com/ladnir/cryptoTools.

[60] Julien P. Stern. 1998. A New Efficient All-Or-Nothing Disclosure of Secrets

Protocol (ASIACRYPT ’98). Springer-Verlag, Berlin, Heidelberg, 357–371.
[61] Sergey Yekhanin. 2010. Private Information Retrieval. Commun. ACM 53, 4 (apr

2010), 68–73. https://doi.org/10.1145/1721654.1721674

A DPF EVAL PROTOCOL
For completeness, we give theΠEval protocol (Algorithm 3) from [13,

30] and use it to prove perfect correctness of Ds protocol in Lemma 3.6.

Parties 𝑃𝑏 , 𝑏 ∈ {0, 1} has DPF key 𝑘𝑏 generated by Ds protocol

corresponding to point function 𝑓𝑟,𝑣 (𝑟 ∈ [𝑁], 𝑣 ∈ F) and evaluate

the key on 𝑥 ∈ [𝑁], 𝑛 = log𝑁 . Prg and Convert are pseduorandom
functions defined in Section 3.1

Algorithm 3: ΠEval (𝑏, 𝑘𝑏 , 𝑥)
Input: Party 𝑃𝑏 has DPF key 𝑘𝑏 and evaluation point

𝑥 ∈ [𝑁]
Output: 𝑃𝑏 outputs ⟨𝑓𝑟,𝑣 (𝑥)⟩𝑏 ∈ F i.e. arithmetic secret

share of function value at 𝑥 .

1 Parse 𝑘𝑏 =

(
𝑆0
𝑏
, 𝑡0
𝑏
,
{
𝜎 𝑗 , 𝜏 𝑗,0, 𝜏 𝑗,1

}
𝑗∈[1,𝑛] , 𝛾

)
.

2 for 𝑗 = 1 to 𝑛 do
3 (𝑆 𝑗,0

𝑏
∥𝑡 𝑗,0
𝑏
∥𝑆 𝑗,1

𝑏
∥𝑡 𝑗,1
𝑏
) = Prg(𝑆 𝑗−1

𝑏
).

4 𝑆
𝑗

𝑏
= 𝑆

𝑗,𝑥 𝑗

𝑏
⊕ (𝑡 𝑗−1

𝑏
· 𝜎 𝑗).

5 𝑡
𝑗

𝑏
= 𝑡 𝑗,𝑥 𝑗 ⊕ (𝑡 𝑗−1

𝑏
· 𝜏 𝑗,𝑥 𝑗).

6 end
7 Output ⟨𝑓𝑟,𝑣 (𝑥)⟩𝑏 = (−1)𝑏 [Convert(𝑆𝑛

𝑏
) + 𝑡𝑛

𝑏
· 𝛾].

B G-ORACLE FOR DOERNER-SHELAT KEY
GENERATION

The secure computation in step 5, 10 in Ds protocol (Algorithm 1)

can be modeled as G (Functionality 2). To distinguish between

computing correction words {𝐶𝑊𝑖 }𝑖∈[1,𝑛] and 𝛾 , parties input 𝑖 ∈
[1, 𝑛 + 1]. G outputs 𝐶𝑊𝑖 for 𝑖 ∈ [1, 𝑛] and 𝛾 for 𝑖 = 𝑛 + 1. The
notation for variables is same as that used in Ds protocol.

As is clear from the description, the only interaction between

parties in Ds protocol is to compute outputs of G which is a two

party non-cryptographic functionality.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

https://doi.org/10.1145/73007.73014
https://doi.org/10.1145/73007.73014
https://github.com/ladnir/cryptoTools
https://doi.org/10.1145/1721654.1721674

	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques
	1.3 Other Related Works

	2 Preliminaries
	2.1 Private Information Retrieval with GOD

	3 Distributed Point Functions
	3.1 Doerner-shelat DPF Key Generation Protocol

	4 Protocol for PIR with GOD
	4.1 Proof of Theorem 4.1
	4.2 Concrete Efficiency
	4.3 Extension to large database entries

	5 Implementation and Evaluation
	5.1 Performance
	5.2 Comparison to other works

	References
	A DPF Eval Protocol
	B G-oracle for Doerner-Shelat Key generation

