A BRIEF NOTE ON FINITE FIELDS

NAMAN KUMAR

Abstract. We provide a brief primer on the introductory theory of finite fields from an abstract perspective, aimed primarily at computer scientists.

1. INTRODUCTION

We start by defining the notion of a field.

Definition 1.1. *A field is a set F together with two operations* $(+, \cdot)$ *, which satisfies the following properties (termed as the field axioms)*¹ *:*

- (1) *Associativity:* $a + (b + c) = (a + b) + c$ *, and* $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ *.*
- (2) *Commutativity:* $a + b = b + a$, $a \cdot b = b \cdot a$.
- (3) *Additive Identity: There exists some* $0 \in F$ *such that* $a + 0 = a$ *for all a ∈ F.*
- (4) *Multiplicative Identity: There exists some* $1 \in F$ *such that* $1 \cdot a = a$ *for all* $a \in F$ *, where* $1 \neq 0$ *.*
- (5) *Additive Inverse: For each a ∈ F, there exists a unique −a such that* $(-a) + a = 0.$
- (6) *Multiplicative Inverse: For each nonzero* $a \in F$ *there exists* a unique a^{-1} *such that* $a \cdot a^{-1} = 1$ *.*
- (7) *Distributivity:* $a \cdot (b + c) = a \cdot b + a \cdot c$.

Definition 1.2. *A finite field is a field* $(F, +, \cdot)$ *such that the set* F *is finite.*

Note. For the remainder of this article, we will let 'field' refer primarily to finite fields; the theorems are not meant to be taken in their full generality, but rather restricted to the finite case.

1.3. **The field** \mathbb{F}_p . The stereotypical example of a finite field is the field $\mathbb{Z}/p\mathbb{Z}$, where *p* is prime. We denote this field by \mathbb{F}_p . Note that this field has exactly *p* elements, and every element vanishes under multiplication by *p* (or 0 in the context of the field). All the axioms are easy to verify, except the existence of a multiplicative inverse. To show this, we use Bézout's Identity.

Lemma 1.4 (Bézout's Identity). Let $a, b \in \mathbb{Z}$ and $a, b \neq 0$. Then there exist $x, y \in \mathbb{Z}$ *such that* $ax + by = \gcd(a, b)$ *.*

Proof. The proof follows from the correctness of the Euclidean Division Algorithm, which allows x and y to be computed explicitly. \Box

OREGON STATE UNIVERSITY

Date: October 18, 2024.

¹A **commutative ring with unity** is a set $(R, +, \cdot)$ which satisfies all the axioms except the existence of multiplicative inverses. We will colloquially refer to *R* as a ring.

With this in hand, we take $a \in \mathbb{F}_p$ with $a \neq 0$ and p. By the previous identity it follows that there exists some x, y such that $ax + py = 1$, since $gcd(a, p) = 1$ for $a \in \mathbb{F}_p$. Then it immediately follows that $\exists x$ such that $ax \equiv 1 \pmod{p}$, which is the multiplicative inverse.

In fact, we can go further: we can show that a^{p-2} is an inverse of a.

Theorem 1.5 (Fermat's Little Theorem). For prime p and all $a \in \mathbb{N}^+$, $a^{p-1} \equiv a$ (mod *p*)*.*

Proof. Consider the multiplicative group $(\mathbb{Z}/p\mathbb{Z})^{\times}$. This contains all *a* in $\mathbb{Z}/p\mathbb{Z}$ except 0. By Lagrange's theorem, the order of *a* must divide $|(\mathbb{Z}/p\mathbb{Z})^{\times}| = p - 1$. Hence, $a^{p-1} = a$ in $(\mathbb{Z}/p\mathbb{Z})^{\times}$, and thus $a^{p-1} = a \pmod{p}$.

It immediately follows that a^{p-2} is the inverse of *a* in \mathbb{F}_p .

1.6. **Polynomial Rings.** Consider a ring R . Then $R[x]$ is the ring of polynomials with coefficients in R ; this can be very easily verified to be a ring, and in particular, supports the euclidean division algorithm. We will briefly consider how to construct more rings from *R*[*x*].

Definition 1.7 (Quotient Rings of Polynomials)**.** *Let R*[*x*] *be a polynomial ring and* $p(x) \in R[x]$ *be some polynomial. Consider the set of equivalence classes* $R[x]/p(x)$, *where elements* $a, b \in R[x]$ *are said to be in the same equivalence class (designated* \overline{a} *as* \overline{a} \sim *b*) *if* $p(x) | a-b$; we denote the equivalence class as \overline{a} . Let \overline{a} \overline{a} \overline{b} \overline{a} \overline{b} \overline{a} *and* $\llbracket a \rrbracket \cdot \llbracket b \rrbracket = \llbracket a \cdot b \rrbracket$. Then this set forms a ring.

The above can be easily checked, we leave it as an exercise. It is easy to see that $F[x]$ is not a field even if *F* is a field. A natural question is whether $F[x]/p(x)$ can be a field: in general this is false. A counterexample is the ring $\mathbb{Z}/2\mathbb{Z}[x]/(x^2)$. The elements of this ring are $\{0, 1, x, x + 1\}$. However, x has no multiplicative inverse: $x \cdot 1 = x, x \cdot x = x^2 = 0$, and $x \cdot (x+1) = x^2 + x = x$. However, $\mathbb{Z}/p\mathbb{Z}[x]/(x+1)$ is a field (check)!

1.8. **Adjoining Elements.** We now see a way to construct fields. Consider the *√* field $\mathbb Q$ of the rationals. Define the new field $\mathbb Q(\sqrt{2})$ as

$$
\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}.
$$

Let addition and multiplication be defined in the obvious way. Seeing that this is a field is not too hard – the only nontriviality is seeing that a multiplicative inverse exists, but this can be easily found by rationalizing the denominator of the fractional inverse and obtained as

$$
\frac{a-b\sqrt{2}}{a^2-b^2}
$$

in the closed form.

what exactly is this held: It is the held \sqrt{a} *adjoined* with an additional element, $\sqrt{2}$. We define $\sqrt{2}$ to be the element which is a root of the polynomial $x^2 - 2$. What exactly is this field? It is the field Q *adjoined* with an additional element, Consider now the ring $\mathbb{Q}[x]/(x^2-2)$. A way to interpret this ring is to consider all polynomials of the form $a(x) = (x^2 - 2)q(x) + r(x)$ and then send $x^2 - 2 \rightarrow 0$, ie. *a*(*x*) \sim *r*(*x*). Note that sending *x*² − 2 → 0 is equivalent to sending *x*² → 2, and thus $\mathbb{Q}[x]/(x^2 - 2)$ can be viewed as all polynomials in $\mathbb{Q}[x]$ with x^2 sent to 2. For example, $p(x) = x^3 + 2x^2 + x + 4 = (x^2)x + 2(x^2) + x + 4 \rightarrow 2x + 4 + x + 4 = 3x + 8$. Thus, the equivalence class of $p(x)$ is $3x + 8$.

In particular, note that $x \cdot x = x^2 = 2$. Hence, $\mathbb{Q}[x]/(x^2 - 2)$ can be written as

{a + *bx* : *a, b ∈* Q*}*

where $x^2 = 2$. It follows that $x \mapsto \sqrt{2}$ is an isomorphism, and $\mathbb{Q}(\sqrt{2}) \cong \mathbb{Q}[x]/(x^2 -$ 2). We will see that whenever $p(x)$ is a monic irreducible polynomial in $F[x]$, then $F[x]/p(x)$ is a field which can also be interpreted as $F(\alpha)$ where α is an adjoint element that serves as a root of $p(x)$.

Theorem 1.9. If $p(x)$ is a monic irreducible polynomial, then $F[x]/p(x)$ is a field².

Proof. The fact that $F[x]/p(x)$ is a ring is immediate; this follows from definition 1.7. The nontrivial part is showing the existence of a multiplicative inverse. That is, we have to show that for any nonzero element $a \in F[x]/p(x)$, there exists some *b* such that $ab = 1$. Note first that we can take the (polynomial) degree of *g* to be less than *p*: if not, we can use the euclidean algorithm in $F[x]$ to rewrite $g = pq + r$ for some polynomials q and r and take r to be the representative of *g* in $F[x]/p(x)$. It immediately follows that *g* and *p* share no common factors as *p* is irreducible (and no constant factors, either, since it is monic). Again using Bézout's Identity over $F[x]$, we can write $gx + py = 1$. However, recall that $p \rightsquigarrow 0$ in $F[x]/p(x)$, and so $gx = 1$, which gives a multiplicative inverse for *g*.

The above proof uses Bézout's Identity over $F[x]$. In general, this identity holds over various domains of interest, and the proof over $\mathbb Z$ also applies to $F[x]$ without much change. We now consider the ring $F(\alpha)$ and set p to be the minimal polynomial of α , ie. *p* is the lowest degree polynomial in $F[x]$ such that α is a root. Note that this also means that *p* must be irreducible, else you could factor out the other factors to obtain a polynomial of lesser degree.

Corollary 1.10. *The field* $F[x]/p$ *is isomorphic to the ring* $F(\alpha)$ *obtained by adjoining the element* α *that is defined have minimal polynomial p.*

Proof. Consider the map from $F[x]$ to $F(\alpha)$ defined as $f: x \mapsto \alpha$. It is clear that this is a ring homomorphism. We consider the kernel of *f*. Clearly, $f(q(x)) = 0$ implies $q(\alpha) = 0$. Recall that α is *defined* as a root of $p(x)$, hence $p | q$ as p is the minimal polynomial of α . On the flipside, every multiple of $p(x)$ is sent to 0. It follows that the kernel of f is every multiple of $p(x)$. As rings, this is the ideal $(p(x))$, and the first ring isomorphism theorem states that the quotient ring $F[x]/(p(x))$ is isomorphic to $F(\alpha)$. Furthermore, $F(\alpha)$ is hence a field as well. □

Example 1.11. *Check that* $\mathbb{Z}/2\mathbb{Z}[x]/(x^2 + x + 1)$ *is a finite field of size* 4*.*

Proof. Let $p(x) = x^2 + x + 1$. Then $p(0) = 1$, and $p(1) = 1$. Hence this has no roots and is irreducible over $\mathbb{Z}/2\mathbb{Z}$. Thus, $\mathbb{Z}/2\mathbb{Z}[x]/p(x)$ is a field. Furthermore, each element must be a polynomial of degree at most 1. Hence, the field is $\{0, 1, x, x+1\}$. Note that unlike the counterexample $\mathbb{Z}/2\mathbb{Z}[x](x^2)$, here *x* does have an inverse: $x \cdot (x+1) = x^2 + x = 1.$

Corollary 1.12. *Let F be a field and p be a monic irreducible polynomial. Then* $E = F[x]/p$ *is a vector space over F. Furthermore, the dimension of E is* $d = \deg p$ *.*

²We define a **monic irreducible** polynomial in *F* to be a polynomial which has leading coefficient 1 and does not have a nontrivial factorization into nonconstant polynomials. This definition is probably unsatisfying; note that there is no reason why monic irreducible polynomials need even exist. We will study more about this in a later version of this document.

Proof. We will show that $(E, +, \cdot)$ is a vector space over *F*. Let $a, b \in E$. The axioms of addition follow immediately from the fact that *E* is a field. Note that *F* \subseteq *E*; then the scalar multiplication axioms follow as well. Set *E* = *F*(α). Then we claim $1, \alpha, \alpha^2, \ldots, \alpha^{d-1}$ is a basis for *E*. If it is not, then $\alpha^{d-1} = \sum_{j=0}^{d-2} k_j \alpha^j$. Then α is a root of this polynomial of degree $d-1$, which contradicts the fact that *p* is irreducible. \Box

2. Classification of Finite Fields

We will now turn our attention to the study of finite fields, and show several important results about the existence and uniqueness of finite fields.

2.1. **Characteristic.** We start by showing that the size of a finite field is associated with a prime called the characteristic.

Theorem 2.2. If F is a finite field, then F contains a copy of $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ for some *prime p.*

Proof. We will show by a simple counting argument. *F* contains 1, and consider the elements $1, 1 + 1, 1 + 1 + 1, \ldots$. Since *F* is finite, this sequence must repeat; suppose that $n \cdot 1 = m \cdot 1$. It follows that $(n - m) \cdot 1 = 0$. Take the minimum such *x* for which $x \cdot 1 = 0$. We claim that *x* must be prime. Suppose it is not, and that $ab \cdot 1 = 0$ for some $a, b \leq x$. Then either $a \cdot 1 = 0$ or $b \cdot 1 = 0$, since $a, b \neq 0$. This contradicts the fact that *x* is the minimum such number, and thus *x* does not have a nontrivial factorization, and is prime. It is then easy to see that the elements $\{0, 1, 2 \cdot 1, \ldots, (p-1) \cdot 1\}$ are isomorphic to \mathbb{F}_p .

Definition 2.3. *The characteristic of a finite field F is the minimum x such that* $x \cdot 1 = 0$ *.*

Corollary 2.4. *The characteristic of a finite field is always prime.*

2.5. **Size of finite fields.** We call the subfield $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ the **prime subfield** of *F*. It is easy to see that *F* is a vector space over \mathbb{F}_p ; note that the proof actually follows from corollary 1.12, the first part of which only uses the fact that *E* is an extension field of F . Furthermore, since F is finite, the degree of F must be also be finite. Now take any basis $\mathcal{B} = \{b_1, \ldots, b_t\}$ of *F* over \mathbb{F}_p . It follows that

$$
F = \left\{ \sum_{i=1}^{t} a_i b_i : a_i \in \mathbb{F}_p \right\},\
$$

and in particular that $|F| = p^t$.

Theorem 2.6. The cardinality of any finite field F is p^t for some prime p .

We first show a very useful lemma.

Lemma 2.7. *Let F be a finite field of size p t . Then every element in F is a root of the polynomial* $x^{p^t-1} - 1 = 0$.

Proof. We will use Lagrange's theorem. Let $|F| = p^t$ and suppose that $\alpha \in F^{\times}$. Then it follows that $\alpha^{p^t-1} = 1$, since the order of any element in a group divides the size of the group. In particular, this implies that $\alpha^{p^t-1} - 1 = 0$. Hence, α is a root of the polynomial $x^{p^t-1} - 1 = 0$. **Theorem 2.8.** Let F be a finite field and denote by F^{\times} its multiplicative subgroup $F \setminus \{0\}$ *. Then* F^{\times} *is cyclic.*

Proof. First, note that any polynomial $x^d - 1$ has at most *d* solutions in F^{\times} , which follows from a simple quotienting argument.

Suppose now that $|F^{\times}| = n$. For each $d | n$, denote by F_d the elements of F^{\times} of order *d*. It is possible that F_d may be empty. If it is not empty, then take $y \in F_d$. Let $\langle y \rangle$ be the subgroup generated by *y*; we claim that $\langle y \rangle \subseteq \{x \in F^\times : x^d = 1\}$. This follows immediately from the fact that $x \in \langle y \rangle \implies x = y^k$, and $x^d = y^{kd} = 1$. Furthermore, since *y* is of order *d*, indeed $|\langle y \rangle| = d$. Using the fact that the set is defined as all such elements which satisfy the polynomial $x^d - 1 = 0$, this set can have at most *d* elements, and hence $\langle y \rangle = \{x \in F^\times : x^d = 1\}.$

Now note that since every element of F_d satisfies $x^d - 1 = 0$, $F_d \subseteq \langle y \rangle$. In fact, $\langle y \rangle$ is nothing but a copy of $\mathbb{Z}/d\mathbb{Z}$. The number of elements of order *exactly d* in this group is $\phi(d)$ (known as the principal generators), where ϕ is Euler's totient function.

It follows that F_d either has size 0 or size $\phi(d)$. Every element of *F* is in *some* F_d . Since we now know the size of each F_d , we can add them up. Recall that

$$
\sum_{d|n} \phi(n) = n.
$$

We then get that

$$
n=|F^\times|=\sum_{d|n}|F_d|\geq \sum_{d|n}\phi(d)
$$

with equality holding iff $|F_d| \neq 0$ for *any* F_d . However, this includes F_n . Hence $F_n \neq \emptyset$, and thus there are elements of order *n* in F^{\times} . It follows that F^{\times} is cyclic. \Box

The above theorem has many interesting consequences. In particular, take *E/F* (which denotes that *E* is an extension field of *F*). If $E = F(\alpha)$, then in fact $\langle \alpha \rangle = E^{\times}$. If this were not true, the the order of *α* would be some $d < n$ implying that $\alpha^d - 1 = 0$, which contradicts the fact that $x^n - 1$ is the minimal polynomial of α – and hence $E \neq F(\alpha)$.

Stop and note here that the above implies that every finite field is an *algebraic* extension of \mathbb{F}_p . This means that every finite field can be written as $\mathbb{F}_p[x]/f(x) \cong$ $\mathbb{F}_p(\alpha)$ for some irreducible polynomial $f(x)$, which is also the minimal polynomial of α . Furthermore, this minimal polynomial divides $x^{p^t-1} - 1 = 0$. Taking any element $\alpha \in F$, denote its minimal polynomial as $m_{\alpha}(x)$.

2.9. **Uniqueness of finite fields.** We have shown that finite fields can only be of size p^t for prime p . We will now show that every such field is unique.

Theorem 2.10. *Let* $|E| = |F| = p^t$ *. Then* $E \cong F$ *.*

Proof. Let $E = \mathbb{F}_p(\alpha)$. Consider $m_{\alpha_1}(x)$. This polynomial divides $x^{p^t} - 1$, because $\alpha \in E$. Furthermore, the degree of $m_{\alpha_1}(x)$ is *t*; this follows from corollary 1.12.

Now note that $m_{\alpha_1}(x)$ must have a root in *F* as well, since it divides $x^{p^t-1}-1$. Call this root α_2 . Consider $m_{\alpha_2}(x)$. Since $m_{\alpha_2}(x)$ is minimal, it must divide $m_{\alpha_1}(x)$, but by irreducibility of $m_{\alpha_1}(x)$, $m_{\alpha_2}(x) = cm_{\alpha_1}(x)$ for some constant factor $c \in \mathbb{F}_p$. The implication is that $\mathbb{F}_p(\alpha_2) \subseteq F$. But $\mathbb{F}_p(\alpha_2)$ was obtained by adjoining an element with minimal polynomial of degree *t*, and hence the size of this field must be p^t , which is equal to the size of *F*. Thus, $\mathbb{F}_p(\alpha_2) = F$.

Now map $\alpha_1 \mapsto \alpha_2$. It is easily seen that this is a field isomorphism. \Box

2.11. **Existence of Finite Fields.** Until now we have seen that if finite fields exist, they are of size p^t and there is a unique field of such size. We now show that this is in fact achieved: there is such a finite field for every p, t .

Theorem 2.12. For any t , there is a finite field of size p^t .

Before we move to the proof proper, we define the splitting field of \mathbb{F}_p .

Definition 2.13. The *splitting field* of polynomial $f(x)$ over F is the minimal *field extension such that the polynomial factors into linear factors over F.*

Such a field can be created by adjoining roots until every polynomial is factored.

Proof (of theorem 2.12). We claim that the splitting field *F* of $x^{p^t} - x$ over \mathbb{F}_p has size *p t* .

First we will show that $|F| \leq p^t$. Recall that *F* was made by adjoining all roots of $x^{p^t} - x$ to it. Let y, y' be two such roots. Then we show that all the additive/multiplicative combinations of *y*, y' are also roots of $x^{p^t} - 1$. Multiplication follows trivially. For addition, note that

$$
(y + y')^{p^{t}} - 1 = \sum_{i=0}^{p^{t}} {p^{t}} \choose i} y^{i} y'^{p^{t} - 1}.
$$

Since $\binom{p^t}{i}$ *i*^t
_{*i*}) is always divisible by *p*, in \mathbb{F}_p this reduces to $y^{p^t} + y'^{p^t} = y + y'$. Note that every adjoined element is by definition a root, while the elements of \mathbb{F}_p are trivially roots of $x^{p^t} - x$ (as they are raised to the power *p*). Thus, every element of *F* is a root of $x^{p^t} - x$. Since this has at most p^t roots, the size is bounded.

While we do know that there are p^t linear factors, this does not mean that they are not repeats. In particular, there could be multiple roots with the same value; this would mean that $|F| < p^t$. We will show that this is not possible, because $f(x) = x^{p^t} - x$ contains no repeat roots. To show this, recall that the repeat roots of a polynomial are roots of $gcd(f, f')$. Now take $(x^{p^t} - x)' = -1$ in \mathbb{F}_p . However, this has no root. It follows that f has no repeat roots, and thus all the new elements we added were unique. We conclude that $|F| = p^t$. □

We have now proved the following theorem.

Theorem 2.14 (Classification of Finite Fields). *For each prime p and* $t \in \mathbb{N}$, *there exists a unique finite field of size* p^t *, which is isomorphic to* $\mathbb{F}_p[x]/f(x)$ *, where* $f(x)$ *is an irreducible polynomial over* \mathbb{F}_p *of degree t.*

3. Galois Fields

We first make some common remarks on notation.

- (1) The finite field of order *q* is denoted \mathbb{F}_q or $GF(q)$.
- (2) $\mathbb{F}_{p^k} \neq \mathbb{Z}/p^k\mathbb{Z}$ in general; it holds only for $k = 1$.
- (3) $\mathbb{F}_{p^k} \neq (\mathbb{Z}/p\mathbb{Z})^k$ in general; they *are* isomorphic as vector spaces, however.
- (4) $\mathbb{F}_{p^k} \leq \mathbb{F}_{p^l}$ iff $k \mid l$.

3.1. **Frobenius Map.** Let F be a finite field and recall the map $x \mapsto x^p$. Note that this map sends \mathbb{F}_p to itself. Furthermore, it is additive as well as multiplicative. We call this map the **Frobenius Automorphism**, denoted by Frob.

We show that Frob is an automorphism. To do this, it is enough to see that it is an injection; we have already seen that it is a homomorphism. Let $x^p = y^p$. Then it follows that $x^p - y^p = (x - y)^p = 0 \implies x = y$, and we are done.

Definition 3.2. Let $\text{Aut}(E/F)$ be the group of automorphisms of E that preserve *F.*

Note that $Frob ∈ Aut(E/F)$. However, it is not unique. Note that an automorphism that preserves *F* must send a root of the minimal polynomial to another root. It follows that

$$
|\text{Aut}(E/F)| \leq [E:F]
$$

where $[E : F]$ is the degree of the field extension.

Definition 3.3. E/F *is Galois if* $|\text{Aut}(E/F)| = [E : F].$

We end this section by stating without proof that $\mathbb{F}_{p^t}/\mathbb{F}_p$ is always Galois, hence why it is sometimes represented as $GF(p^t)$.