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NAMAN KUMAR

Abstract. We provide a brief primer on the introductory theory of finite
fields from an abstract perspective, aimed primarily at computer scientists.

1. Introduction

We start by defining the notion of a field.

Definition 1.1. A field is a set F together with two operations (+, ·), which sat-
isfies the following properties (termed as the field axioms)1:

(1) Associativity: a+ (b+ c) = (a+ b) + c, and (a · b) · c = a · (b · c).
(2) Commutativity: a+ b = b+ a, a · b = b · a.
(3) Additive Identity: There exists some 0 ∈ F such that a + 0 = a for all

a ∈ F .
(4) Multiplicative Identity: There exists some 1 ∈ F such that 1 · a = a for all

a ∈ F , where 1 6= 0.
(5) Additive Inverse: For each a ∈ F , there exists a unique −a such that

(−a) + a = 0.
(6) Multiplicative Inverse: For each nonzero a ∈ F there exists a unique a−1

such that a · a−1 = 1.
(7) Distributivity: a · (b+ c) = a · b+ a · c.

Definition 1.2. A finite field is a field (F,+, ·) such that the set F is finite.

Note. For the remainder of this article, we will let ‘field’ refer primarily to finite
fields; the theorems are not meant to be taken in their full generality, but rather
restricted to the finite case.

1.3. The field Fp. The stereotypical example of a finite field is the field Z/pZ,
where p is prime. We denote this field by Fp. Note that this field has exactly
p elements, and every element vanishes under multiplication by p (or 0 in the
context of the field). All the axioms are easy to verify, except the existence of a
multiplicative inverse. To show this, we use Bézout’s Identity.

Lemma 1.4 (Bézout’s Identity). Let a, b ∈ Z and a, b 6= 0. Then there exist
x, y ∈ Z such that ax+ by = gcd(a, b).

Proof. The proof follows from the correctness of the Euclidean Division Algorithm,
which allows x and y to be computed explicitly. □
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1A commutative ring with unity is a set (R,+, ·) which satisfies all the axioms except the

existence of multiplicative inverses. We will colloquially refer to R as a ring.
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With this in hand, we take a ∈ Fp with a 6= 0 and p. By the previous identity
it follows that there exists some x, y such that ax+ py = 1, since gcd(a, p) = 1 for
a ∈ Fp. Then it immediately follows that ∃x such that ax ≡ 1 (mod p), which is
the multiplicative inverse.

In fact, we can go further: we can show that ap−2 is an inverse of a.

Theorem 1.5 (Fermat’s Little Theorem). For prime p and all a ∈ N+, ap−1 ≡ a
(mod p).

Proof. Consider the multiplicative group (Z/pZ)×. This contains all a in Z/pZ
except 0. By Lagrange’s theorem, the order of a must divide |(Z/pZ)×| = p − 1.
Hence, ap−1 = a in (Z/pZ)×, and thus ap−1 = a (mod p). □

It immediately follows that ap−2 is the inverse of a in Fp.

1.6. Polynomial Rings. Consider a ring R. Then R[x] is the ring of polynomials
with coefficients in R; this can be very easily verified to be a ring, and in particular,
supports the euclidean division algorithm. We will briefly consider how to construct
more rings from R[x].

Definition 1.7 (Quotient Rings of Polynomials). Let R[x] be a polynomial ring and
p(x) ∈ R[x] be some polynomial. Consider the set of equivalence classes R[x]/p(x),
where elements a, b ∈ R[x] are said to be in the same equivalence class (designated
as a ∼ b) if p(x) | a−b; we denote the equivalence class as JaK. Let JaK+JbK = Ja+bK
and JaK · JbK = Ja · bK. Then this set forms a ring.

The above can be easily checked, we leave it as an exercise. It is easy to see that
F [x] is not a field even if F is a field. A natural question is whether F [x]/p(x) can
be a field: in general this is false. A counterexample is the ring Z/2Z[x]/(x2). The
elements of this ring are {0, 1, x, x + 1}. However, x has no multiplicative inverse:
x · 1 = x, x · x = x2 = 0, and x · (x+ 1) = x2 + x = x. However, Z/pZ[x]/(x+ 1) is
a field (check)!

1.8. Adjoining Elements. We now see a way to construct fields. Consider the
field Q of the rationals. Define the new field Q(

√
2) as

Q(
√
2) = {a+ b

√
2 : a, b ∈ Q}.

Let addition and multiplication be defined in the obvious way. Seeing that this
is a field is not too hard – the only nontriviality is seeing that a multiplicative
inverse exists, but this can be easily found by rationalizing the denominator of the
fractional inverse and obtained as

a− b
√
2

a2 − b2

in the closed form.
What exactly is this field? It is the field Q adjoined with an additional element,√
2. We define

√
2 to be the element which is a root of the polynomial x2 − 2.

Consider now the ring Q[x]/(x2 − 2). A way to interpret this ring is to consider all
polynomials of the form a(x) = (x2 − 2)q(x) + r(x) and then send x2 − 2 ⇝ 0, ie.
a(x) ∼ r(x). Note that sending x2 − 2 ⇝ 0 is equivalent to sending x2 ⇝ 2, and
thus Q[x]/(x2 − 2) can be viewed as all polynomials in Q[x] with x2 sent to 2. For
example, p(x) = x3+2x2+x+4 = (x2)x+2(x2)+x+4⇝ 2x+4+x+4 = 3x+8.
Thus, the equivalence class of p(x) is 3x+ 8.
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In particular, note that x · x = x2 = 2. Hence, Q[x]/(x2 − 2) can be written as
{a+ bx : a, b ∈ Q}

where x2 = 2. It follows that x 7→
√
2 is an isomorphism, and Q(

√
2) ∼= Q[x]/(x2 −

2). We will see that whenever p(x) is a monic irreducible polynomial in F [x], then
F [x]/p(x) is a field which can also be interpreted as F (α) where α is an adjoint
element that serves as a root of p(x).

Theorem 1.9. If p(x) is a monic irreducible polynomial, then F [x]/p(x) is a field2.

Proof. The fact that F [x]/p(x) is a ring is immediate; this follows from defini-
tion 1.7. The nontrivial part is showing the existence of a multiplicative inverse.
That is, we have to show that for any nonzero element a ∈ F [x]/p(x), there exists
some b such that ab = 1. Note first that we can take the (polynomial) degree of
g to be less than p: if not, we can use the euclidean algorithm in F [x] to rewrite
g = pq + r for some polynomials q and r and take r to be the representative of
g in F [x]/p(x). It immediately follows that g and p share no common factors as
p is irreducible (and no constant factors, either, since it is monic). Again using
Bézout’s Identity over F [x], we can write gx+ py = 1. However, recall that p⇝ 0
in F [x]/p(x), and so gx = 1, which gives a multiplicative inverse for g. □

The above proof uses Bézout’s Identity over F [x]. In general, this identity holds
over various domains of interest, and the proof over Z also applies to F [x] without
much change. We now consider the ring F (α) and set p to be the minimal polyno-
mial of α, ie. p is the lowest degree polynomial in F [x] such that α is a root. Note
that this also means that p must be irreducible, else you could factor out the other
factors to obtain a polynomial of lesser degree.

Corollary 1.10. The field F [x]/p is isomorphic to the ring F (α) obtained by ad-
joining the element α that is defined have minimal polynomial p.

Proof. Consider the map from F [x] to F (α) defined as f : x 7→ α. It is clear that
this is a ring homomorphism. We consider the kernel of f . Clearly, f(q(x)) = 0
implies q(α) = 0. Recall that α is defined as a root of p(x), hence p | q as p is
the minimal polynomial of α. On the flipside, every multiple of p(x) is sent to
0. It follows that the kernel of f is every multiple of p(x). As rings, this is the
ideal (p(x)), and the first ring isomorphism theorem states that the quotient ring
F [x]/(p(x)) is isomorphic to F (α). Furthermore, F (α) is hence a field as well. □
Example 1.11. Check that Z/2Z[x]/(x2 + x+ 1) is a finite field of size 4.

Proof. Let p(x) = x2 + x + 1. Then p(0) = 1, and p(1) = 1. Hence this has no
roots and is irreducible over Z/2Z. Thus, Z/2Z[x]/p(x) is a field. Furthermore, each
element must be a polynomial of degree at most 1. Hence, the field is {0, 1, x, x+1}.
Note that unlike the counterexample Z/2Z[x](x2), here x does have an inverse:
x · (x+ 1) = x2 + x = 1. □
Corollary 1.12. Let F be a field and p be a monic irreducible polynomial. Then
E = F [x]/p is a vector space over F . Furthermore, the dimension of E is d = deg p.

2We define a monic irreducible polynomial in F to be a polynomial which has leading
coefficient 1 and does not have a nontrivial factorization into nonconstant polynomials. This
definition is probably unsatisfying; note that there is no reason why monic irreducible polynomials
need even exist. We will study more about this in a later version of this document.
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Proof. We will show that (E,+, ·) is a vector space over F . Let a, b ∈ E. The
axioms of addition follow immediately from the fact that E is a field. Note that
F ⊆ E; then the scalar multiplication axioms follow as well. Set E = F (α). Then
we claim 1, α, α2, . . . , αd−1 is a basis for E. If it is not, then αd−1 =

∑d−2
j=0 kjα

j .
Then α is a root of this polynomial of degree d− 1, which contradicts the fact that
p is irreducible. □

2. Classification of Finite Fields

We will now turn our attention to the study of finite fields, and show several
important results about the existence and uniqueness of finite fields.

2.1. Characteristic. We start by showing that the size of a finite field is associated
with a prime called the characteristic.

Theorem 2.2. If F is a finite field, then F contains a copy of Fp = Z/pZ for some
prime p.

Proof. We will show by a simple counting argument. F contains 1, and consider
the elements 1, 1 + 1, 1 + 1 + 1, . . . . Since F is finite, this sequence must repeat;
suppose that n · 1 = m · 1. It follows that (n−m) · 1 = 0. Take the minimum such
x for which x · 1 = 0. We claim that x must be prime. Suppose it is not, and that
ab · 1 = 0 for some a, b ≤ x. Then either a · 1 = 0 or b · 1 = 0, since a, b 6= 0. This
contradicts the fact that x is the minimum such number, and thus x does not have
a nontrivial factorization, and is prime. It is then easy to see that the elements
{0, 1, 2 · 1, . . . , (p− 1) · 1} are isomorphic to Fp. □

Definition 2.3. The characteristic of a finite field F is the minimum x such
that x · 1 = 0.

Corollary 2.4. The characteristic of a finite field is always prime.

2.5. Size of finite fields. We call the subfield Fp = Z/pZ the prime subfield of
F . It is easy to see that F is a vector space over Fp; note that the proof actually
follows from corollary 1.12, the first part of which only uses the fact that E is an
extension field of F . Furthermore, since F is finite, the degree of F must be also
be finite. Now take any basis B = {b1, . . . , bt} of F over Fp. It follows that

F =

{
t∑

i=1

aibi : ai ∈ Fp

}
,

and in particular that |F | = pt.

Theorem 2.6. The cardinality of any finite field F is pt for some prime p.

We first show a very useful lemma.

Lemma 2.7. Let F be a finite field of size pt. Then every element in F is a root
of the polynomial xpt−1 − 1 = 0.

Proof. We will use Lagrange’s theorem. Let |F | = pt and suppose that α ∈ F×.
Then it follows that αpt−1 = 1, since the order of any element in a group divides
the size of the group. In particular, this implies that αpt−1 − 1 = 0. Hence, α is a
root of the polynomial xpt−1 − 1 = 0. □
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Theorem 2.8. Let F be a finite field and denote by F× its multiplicative subgroup
F \ {0}. Then F× is cyclic.

Proof. First, note that any polynomial xd−1 has at most d solutions in F×, which
follows from a simple quotienting argument.

Suppose now that |F×| = n. For each d | n, denote by Fd the elements of F× of
order d. It is possible that Fd may be empty. If it is not empty, then take y ∈ Fd.
Let 〈y〉 be the subgroup generated by y; we claim that 〈y〉 ⊆ {x ∈ F× : xd = 1}.
This follows immediately from the fact that x ∈ 〈y〉 =⇒ x = yk, and xd = ykd = 1.
Furthermore, since y is of order d, indeed |〈y〉| = d. Using the fact that the set is
defined as all such elements which satisfy the polynomial xd − 1 = 0, this set can
have at most d elements, and hence 〈y〉 = {x ∈ F× : xd = 1}.

Now note that since every element of Fd satisfies xd − 1 = 0, Fd ⊆ 〈y〉. In fact,
〈y〉 is nothing but a copy of Z/dZ. The number of elements of order exactly d in
this group is ϕ(d) (known as the principal generators), where ϕ is Euler’s totient
function.

It follows that Fd either has size 0 or size ϕ(d). Every element of F is in some
Fd. Since we now know the size of each Fd, we can add them up. Recall that∑

d|n

ϕ(n) = n.

We then get that
n = |F×| =

∑
d|n

|Fd| ≥
∑
d|n

ϕ(d)

with equality holding iff |Fd| 6= 0 for any Fd. However, this includes Fn. Hence
Fn 6= ∅, and thus there are elements of order n in F×. It follows that F× is
cyclic. □

The above theorem has many interesting consequences. In particular, take E/F
(which denotes that E is an extension field of F ). If E = F (α), then in fact
〈α〉 = E×. If this were not true, the the order of α would be some d < n implying
that αd − 1 = 0, which contradicts the fact that xn − 1 is the minimal polynomial
of α – and hence E 6= F (α).

Stop and note here that the above implies that every finite field is an algebraic
extension of Fp. This means that every finite field can be written as Fp[x]/f(x) ∼=
Fp(α) for some irreducible polynomial f(x), which is also the minimal polynomial
of α. Furthermore, this minimal polynomial divides xpt−1 − 1 = 0. Taking any
element α ∈ F , denote its minimal polynomial as mα(x).

2.9. Uniqueness of finite fields. We have shown that finite fields can only be of
size pt for prime p. We will now show that every such field is unique.

Theorem 2.10. Let |E| = |F | = pt. Then E ∼= F .

Proof. Let E = Fp(α). Consider mα1(x). This polynomial divides xpt − 1, because
α ∈ E. Furthermore, the degree of mα1(x) is t; this follows from corollary 1.12.

Now note that mα1
(x) must have a root in F as well, since it divides xpt−1 − 1.

Call this root α2. Consider mα2(x). Since mα2(x) is minimal, it must divide
mα1(x), but by irreducibility of mα1(x), mα2(x) = cmα1(x) for some constant
factor c ∈ Fp. The implication is that Fp(α2) ⊆ F . But Fp(α2) was obtained by
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adjoining an element with minimal polynomial of degree t, and hence the size of
this field must be pt, which is equal to the size of F . Thus, Fp(α2) = F .

Now map α1 7→ α2. It is easily seen that this is a field isomorphism. □

2.11. Existence of Finite Fields. Until now we have seen that if finite fields
exist, they are of size pt and there is a unique field of such size. We now show that
this is in fact achieved: there is such a finite field for every p, t.

Theorem 2.12. For any t, there is a finite field of size pt.

Before we move to the proof proper, we define the splitting field of Fp.

Definition 2.13. The splitting field of polynomial f(x) over F is the minimal
field extension such that the polynomial factors into linear factors over F .

Such a field can be created by adjoining roots until every polynomial is factored.

Proof (of theorem 2.12). We claim that the splitting field F of xpt − x over Fp has
size pt.

First we will show that |F | ≤ pt. Recall that F was made by adjoining all
roots of xpt − x to it. Let y, y′ be two such roots. Then we show that all the
additive/multiplicative combinations of y, y′ are also roots of xpt−1. Multiplication
follows trivially. For addition, note that

(y + y′)p
t

− 1 =

pt∑
i=0

(
pt

i

)
yiy′p

t−1.

Since
(
pt

i

)
is always divisible by p, in Fp this reduces to yp

t

+ y′p
t

= y + y′. Note
that every adjoined element is by definition a root, while the elements of Fp are
trivially roots of xpt − x (as they are raised to the power p). Thus, every element
of F is a root of xpt − x. Since this has at most pt roots, the size is bounded.

While we do know that there are pt linear factors, this does not mean that they
are not repeats. In particular, there could be multiple roots with the same value;
this would mean that |F | < pt. We will show that this is not possible, because
f(x) = xpt − x contains no repeat roots. To show this, recall that the repeat roots
of a polynomial are roots of gcd(f, f ′). Now take (xpt − x)′ = −1 in Fp. However,
this has no root. It follows that f has no repeat roots, and thus all the new elements
we added were unique. We conclude that |F | = pt. □

We have now proved the following theorem.

Theorem 2.14 (Classification of Finite Fields). For each prime p and t ∈ N, there
exists a unique finite field of size pt, which is isomorphic to Fp[x]/f(x), where f(x)
is an irreducible polynomial over Fp of degree t.

3. Galois Fields

We first make some common remarks on notation.
(1) The finite field of order q is denoted Fq or GF (q).
(2) Fpk 6= Z/pkZ in general; it holds only for k = 1.
(3) Fpk 6= (Z/pZ)k in general; they are isomorphic as vector spaces, however.
(4) Fpk ≤ Fpl iff k | l.
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3.1. Frobenius Map. Let F be a finite field and recall the map x 7→ xp. Note that
this map sends Fp to itself. Furthermore, it is additive as well as multiplicative.
We call this map the Frobenius Automorphism, denoted by Frob.

We show that Frob is an automorphism. To do this, it is enough to see that it is
an injection; we have already seen that it is a homomorphism. Let xp = yp. Then
it follows that xp − yp = (x− y)p = 0 =⇒ x = y, and we are done.

Definition 3.2. Let Aut(E/F ) be the group of automorphisms of E that preserve
F .

Note that Frob ∈ Aut(E/F ). However, it is not unique. Note that an automor-
phism that preserves F must send a root of the minimal polynomial to another
root. It follows that

|Aut(E/F )| ≤ [E : F ]

where [E : F ] is the degree of the field extension.

Definition 3.3. E/F is Galois if |Aut(E/F )| = [E : F ].

We end this section by stating without proof that Fpt/Fp is always Galois, hence
why it is sometimes represented as GF (pt).


