PACKED SHAMIR SECRET SHARING

NAMAN KUMAR

Abstract. Shamir Secret Sharing is a classical result in cryptography that finds applications in server privacy, distributed computing, MPC, security of P2P networks, and so on. A common variant of Shamir Secret Sharing is *Packed Secret Sharing* (henceforth referred to as PSS) which allows the sharing of *multiple* secrets with small overhead, introduced by [\[FY92\]](#page-2-0) in the context of parallel invocations of MPC protocols. More recently, has been used to construct highly efficient MPC protocols in the low-security threshold setting. In this document, we will review the classical PSS scheme.

1. Threshold Secret Sharing

Shamir Secret Sharing is a *threshold* secret sharing scheme. Intuitively, a *t*-out-of-*n* threshold secret sharing scheme captures the setting in which *n* parties hold shares of a secret and *at least t* parties are required to reconstruct the secret. In particular, no $t-1$ colluding parties can gain any information about the secret. We capture this idea in the definition below.

Definition 1.1 (*t*-out-of-*n* threshold secret sharing scheme)**.** *A t-out-of-n threshold secret sharing scheme over a message space M is a tuple of algorithms* (share*,*reconstruct) *such that:*

- *•* (*s*1*, . . . , sn*) *←* share(1*^λ , m*) *outputs an n-tuple of shares,*
- $x \leftarrow$ reconstruct $(\{y_{i_j}\}_{j \in [t]})$ *outputs a message* $x \in \mathcal{M}$ *.*

The scheme satisfies the following properties:

(1) **Correctness:** For all $m \in M$ and any subset $\{i_j\}_{j \in [t]} \subseteq (s_1, \ldots, s_n)$ of size t,

$$
\Pr[\mathsf{reconstruct}(\{s_{i_j}\}_{j \in [t]}) = m : (s_1, \ldots, s_n) \leftarrow \mathsf{share}(1^{\lambda}, m)] = 1.
$$

(2) **Perfect Security:** For all messages m, m' and subsets $S \subseteq (s_1, \ldots, s_n)$ such that $|S| < t$, for all *PPT adversaries A it holds that*

 $\Pr[\mathcal{A}(1^{\lambda}, \{s_i : i \in S\}) = m] = \Pr[\mathcal{A}(1^{\lambda}, \{s_i : i \in S\}) = m']$

where the probability is taken over $(s_1, \ldots, s_n) \leftarrow \text{share}(1^{\lambda}, m)$ *.*

2. Shamir Secret Sharing

We begin by reviewing Shamir secret sharing, which works on the principle of *Lagrange interpolation*. Shamir secret sharing is a *t*-out-of-*n* secret sharing scheme for any $t \leq n$. The message space is any finite field \mathbb{F}_q .

*t***-out-of-***n* **Shamir Secret Sharing**

Parameters: A security parameter λ , a threshold t and n parties. Let \mathbb{F}_q be the message space *M*.

Protocol:

The share algorithm share($1^{\lambda}, m$)*.*

(1) The dealer samples $a_1, \ldots, a_{t-1} \leftarrow \mathbb{F}_q$ field elements at random and sets $a_0 := m$, constructing the polynomial $p(x) = a_0 + a_1x + \cdots + a_{t-1}x^{t-1}$.

OREGON STATE UNIVERSITY

Date: January 17, 2025.

(2) The dealer computes $s_i := p(i)$ for each $i \in [n]$ and outputs (s_1, \ldots, s_n) .

The reconstruct algorithm reconstruct($\{y_{i_j}\}_{j \in [t]}$).

(1) The parties compute the Lagrange basis polynomials

$$
L_{i_k}(x) = \frac{\prod_{j \neq k} (x - i_j)}{\prod_{j \neq k} (i_k - i_j)}
$$

for each *k*.

(2) The parties compute the polynomial $p'(x) = \sum y_{i_j} L_{i_j}$ and output $p'(0)$.

We can now verify correctness and security. In case the shares are honest, the polynomial $p'(x)$ is the degree- $(t-1)$ polynomial interpolated at the points $\{s_{i_j}\}_{j \in [t]}$, which evaluates to s_{i_j} at i_j . Since *p* has degree- $(t-1)$, there is a unique polynomial which satisfies this requirement at all *t* different points. Hence, the interpolated polynomial is *p*, and the parties can obtain $m = p(0)$.

To verify security, suppose that *t −* 1 colluding parties wish to recover *m* (in case there are less than *t −* 1 complete $t-1$ parties by picking random shares). Then for each $m' \in \mathbb{F}_p$, there exists some y' such that $(y_{i_1}, \ldots, y_{i_{t-1}}, y')$ reconstructs a degree- $(t-1)$ polynomial with m' as the constant coefficient. Since the parties do not know a *t*th share, the polynomial and thus the secret cannot be recovered.

3. Packed Secret Sharing

At a high level, PSS is an extension of Shamir's secret sharing scheme that allows the sharing of *k* different secrets simultaneously. We introduce the scheme of $[FY92]$ $[FY92]$, which is a $(t - k, t, k, n)$ -packed secret sharing scheme, where *k* is the number of secrets, *n* is the number of parties, *t* parties are required to recover the secret, and no colluding group of less than *t − k* parties can gain any information about the secrets. No security guarantee is made about *m* colluding parties if $t - k \leq m < t$.

Intuitively, the scheme uses additional properties of the polynomial to hide more than a single secret.

(*t − k, t, k, n*) **Packed Shamir Secret Sharing**

Parameters: A security parameter λ , a threshold *t*, number of secrets $k < t$ and *n* parties. Let \mathbb{F}_q be the message space *M*. Let the secrets be (m_1, \ldots, m_k) and let $(e_1, \ldots, e_k) \in \mathbb{F}_q^k$ and $(\alpha_1, \ldots, \alpha_n) \in \mathbb{F}_q^k$ be distinct public values where $\alpha_i \neq e_j$ for any *i*, *j*.

Protocol:

The share algorithm share $(1^{\lambda}, (m_1, \ldots, m_k))$ *.*

- (1) The dealer samples any degree- $(t-1)$ polynomial *p* such that $p(e_i) = m_i$ for all $i \in [k]$. Note that there are at least *q* such polynomials since $t - 1 \geq k$.
- (2) The dealer sets $s_i = p(\alpha_i)$ for all $i \in [n]$.

The reconstruct algorithm **reconstruct** $({y_i}_i)_{j \in [t]})$ *.*

(1) The parties compute the Lagrange basis polynomials

$$
L_{i_k}(x) = \frac{\prod_{j \neq k} (x - \alpha_{i_j})}{\prod_{j \neq k} (\alpha_{i_k} - \alpha_{i_j})}
$$

for each *k*.

(2) The parties compute the polynomial $p'(x) = \sum y_{i_j} L_{i_j}$ and output $(p'(e_1), \ldots, p'(e_k))$.

The correctness of the protocol follows from a similar argument to the correctness of Shamir Secret Sharing. For security, note that we can write $p(x) = q(x) \prod (x - e_i) + \sum m_i L_{e_i}(x)$ where $q(x)$ is a random degree- $(t - k)$ polynomial over \mathbb{F}_q . Thus $(t - k)$ or less colluding parties cannot find any information about *q*(*x*). However, more than $(t - k)$ colluding parties could obtain additional data points, for example $q(\alpha_j)$ for certain values of *j* in the colluding group.

REFERENCES

[FY92] Matthew Franklin and Moti Yung. Communication complexity of secure computation (extended abstract). In *Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of Computing*, STOC '92, page 699710, New York, NY, USA, 1992. Association for Computing Machinery.