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Abstract. Shamir Secret Sharing is a classical result in cryptography that finds applications in server
privacy, distributed computing, MPC, security of P2P networks, and so on. A common variant of Shamir
Secret Sharing is Packed Secret Sharing (henceforth referred to as PSS) which allows the sharing of multiple
secrets with small overhead, introduced by [FY92] in the context of parallel invocations of MPC protocols.
More recently, has been used to construct highly efficient MPC protocols in the low-security threshold
setting. In this document, we will review the classical PSS scheme.

1. Threshold Secret Sharing

Shamir Secret Sharing is a threshold secret sharing scheme. Intuitively, a t-out-of-n threshold secret
sharing scheme captures the setting in which n parties hold shares of a secret and at least t parties are
required to reconstruct the secret. In particular, no t− 1 colluding parties can gain any information about
the secret. We capture this idea in the definition below.

Definition 1.1 (t-out-of-n threshold secret sharing scheme). A t-out-of-n threshold secret sharing scheme
over a message space M is a tuple of algorithms (share, reconstruct) such that:

• (s1, . . . , sn)← share(1λ,m) outputs an n-tuple of shares,
• x← reconstruct({yij}j∈[t]) outputs a message x ∈M.

The scheme satisfies the following properties:
(1) Correctness: For all m ∈M and any subset {ij}j∈[t] ⊆ (s1, . . . , sn) of size t,

Pr[reconstruct({sij}j∈[t]) = m : (s1, . . . , sn)← share(1λ,m)] = 1.

(2) Perfect Security: For all messages m,m′ and subsets S ⊆ (s1, . . . , sn) such that |S| < t, for all
PPT adversaries A it holds that

Pr[A(1λ, {si : i ∈ S}) = m] = Pr[A(1λ, {si : i ∈ S}) = m′]

where the probability is taken over (s1, . . . , sn)← share(1λ,m).

2. Shamir Secret Sharing

We begin by reviewing Shamir secret sharing, which works on the principle of Lagrange interpolation.
Shamir secret sharing is a t-out-of-n secret sharing scheme for any t ≤ n. The message space is any finite
field Fq.

t-out-of-n Shamir Secret Sharing

Parameters: A security parameter λ, a threshold t and n parties. Let Fq be the message space
M.

Protocol:
The share algorithm share(1λ,m).

(1) The dealer samples a1, . . . , at−1 ← Fq field elements at random and sets a0 := m, con-
structing the polynomial p(x) = a0 + a1x+ · · ·+ at−1x

t−1.
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(2) The dealer computes si := p(i) for each i ∈ [n] and outputs (s1, . . . , sn).

The reconstruct algorithm reconstruct({yij}j∈[t]).
(1) The parties compute the Lagrange basis polynomials

Lik(x) =

∏
j ̸=k(x− ij)∏
j ̸=k(ik − ij)

for each k.
(2) The parties compute the polynomial p′(x) =

∑
yijLij and output p′(0).

We can now verify correctness and security. In case the shares are honest, the polynomial p′(x) is the
degree-(t − 1) polynomial interpolated at the points {sij}j∈[t], which evaluates to sij at ij . Since p has
degree-(t− 1), there is a unique polynomial which satisfies this requirement at all t different points. Hence,
the interpolated polynomial is p, and the parties can obtain m = p(0).

To verify security, suppose that t− 1 colluding parties wish to recover m (in case there are less than t− 1
complete t − 1 parties by picking random shares). Then for each m′ ∈ Fp, there exists some y′ such that
(yi1 , . . . , yit−1

, y′) reconstructs a degree-(t − 1) polynomial with m′ as the constant coefficient. Since the
parties do not know a tth share, the polynomial and thus the secret cannot be recovered.

3. Packed Secret Sharing

At a high level, PSS is an extension of Shamir’s secret sharing scheme that allows the sharing of k different
secrets simultaneously. We introduce the scheme of [FY92], which is a (t − k, t, k, n)-packed secret sharing
scheme, where k is the number of secrets, n is the number of parties, t parties are required to recover the
secret, and no colluding group of less than t − k parties can gain any information about the secrets. No
security guarantee is made about m colluding parties if t− k ≤ m < t.

Intuitively, the scheme uses additional properties of the polynomial to hide more than a single secret.

(t− k, t, k, n) Packed Shamir Secret Sharing

Parameters: A security parameter λ, a threshold t, number of secrets k < t and n parties.
Let Fq be the message space M. Let the secrets be (m1, . . . ,mk) and let (e1, . . . , ek) ∈ Fk

q and
(α1, . . . , αn) ∈ Fk

q be distinct public values where αi ̸= ej for any i, j.

Protocol:
The share algorithm share(1λ, (m1, . . . ,mk)).

(1) The dealer samples any degree-(t− 1) polynomial p such that p(ei) = mi for all i ∈ [k].
Note that there are at least q such polynomials since t− 1 ≥ k.

(2) The dealer sets si = p(αi) for all i ∈ [n].

The reconstruct algorithm reconstruct({yij}j∈[t]).
(1) The parties compute the Lagrange basis polynomials

Lik(x) =

∏
j ̸=k(x− αij )∏

j ̸=k(αik − αij )

for each k.
(2) The parties compute the polynomial p′(x) =

∑
yijLij and output (p′(e1), . . . , p

′(ek)).

The correctness of the protocol follows from a similar argument to the correctness of Shamir Secret Shar-
ing. For security, note that we can write p(x) = q(x)

∏
(x − ei) +

∑
miLei(x) where q(x) is a random

degree-(t− k) polynomial over Fq. Thus (t− k) or less colluding parties cannot find any information about



PACKED SHAMIR SECRET SHARING 3

q(x). However, more than (t − k) colluding parties could obtain additional data points, for example q(αj)
for certain values of j in the colluding group.
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