PACKED SHAMIR SECRET SHARING

NAMAN KUMAR

ABSTRACT. Shamir Secret Sharing is a classical result in cryptography that finds applications in server privacy, distributed computing, MPC, security of P2P networks, and so on. A common variant of Shamir Secret Sharing is *Packed Secret Sharing* (henceforth referred to as PSS) which allows the sharing of *multiple* secrets with small overhead, introduced by [FY92] in the context of parallel invocations of MPC protocols. More recently, has been used to construct highly efficient MPC protocols in the low-security threshold setting. In this document, we will review the classical PSS scheme.

1. Threshold Secret Sharing

Shamir Secret Sharing is a *threshold* secret sharing scheme. Intuitively, a *t*-out-of-*n* threshold secret sharing scheme captures the setting in which *n* parties hold shares of a secret and *at least t* parties are required to reconstruct the secret. In particular, no t - 1 colluding parties can gain any information about the secret. We capture this idea in the definition below.

Definition 1.1 (*t*-out-of-*n* threshold secret sharing scheme). A *t*-out-of-*n* threshold secret sharing scheme over a message space \mathcal{M} is a tuple of algorithms (share, reconstruct) such that:

- $(s_1, \ldots, s_n) \leftarrow \text{share}(1^{\lambda}, m)$ outputs an n-tuple of shares,
- $x \leftarrow \text{reconstruct}(\{y_{i_j}\}_{j \in [t]}) \text{ outputs a message } x \in \mathcal{M}.$

The scheme satisfies the following properties:

(1) Correctness: For all $m \in M$ and any subset $\{i_j\}_{j \in [t]} \subseteq (s_1, \ldots, s_n)$ of size t,

$$\Pr[\mathsf{reconstruct}(\{s_{i_i}\}_{i \in [t]}) = m : (s_1, \dots, s_n) \leftarrow \mathsf{share}(1^{\lambda}, m)] = 1.$$

(2) **Perfect Security:** For all messages m, m' and subsets $S \subseteq (s_1, \ldots, s_n)$ such that |S| < t, for all PPT adversaries A it holds that

 $\Pr[\mathcal{A}(1^{\lambda}, \{s_i : i \in S\}) = m] = \Pr[\mathcal{A}(1^{\lambda}, \{s_i : i \in S\}) = m']$

where the probability is taken over $(s_1, \ldots, s_n) \leftarrow \text{share}(1^{\lambda}, m)$.

2. Shamir Secret Sharing

We begin by reviewing Shamir secret sharing, which works on the principle of Lagrange interpolation. Shamir secret sharing is a t-out-of-n secret sharing scheme for any $t \leq n$. The message space is any finite field \mathbb{F}_q .

t-out-of-*n* Shamir Secret Sharing

Parameters: A security parameter λ , a threshold t and n parties. Let \mathbb{F}_q be the message space \mathcal{M} .

Protocol:

The share algorithm share $(1^{\lambda}, m)$.

(1) The dealer samples $a_1, \ldots, a_{t-1} \leftarrow \mathbb{F}_q$ field elements at random and sets $a_0 := m$, constructing the polynomial $p(x) = a_0 + a_1 x + \cdots + a_{t-1} x^{t-1}$.

OREGON STATE UNIVERSITY

Date: January 17, 2025.

(2) The dealer computes $s_i := p(i)$ for each $i \in [n]$ and outputs (s_1, \ldots, s_n) .

The reconstruct algorithm reconstruct $(\{y_{i_j}\}_{j \in [t]})$.

(1) The parties compute the Lagrange basis polynomials

$$L_{i_k}(x) = \frac{\prod_{j \neq k} (x - i_j)}{\prod_{j \neq k} (i_k - i_j)}$$

for each k.

(2) The parties compute the polynomial $p'(x) = \sum y_{i_j} L_{i_j}$ and output p'(0).

We can now verify correctness and security. In case the shares are honest, the polynomial p'(x) is the degree-(t-1) polynomial interpolated at the points $\{s_{i_j}\}_{j \in [t]}$, which evaluates to s_{i_j} at i_j . Since p has degree-(t-1), there is a unique polynomial which satisfies this requirement at all t different points. Hence, the interpolated polynomial is p, and the parties can obtain m = p(0).

To verify security, suppose that t-1 colluding parties wish to recover m (in case there are less than t-1 complete t-1 parties by picking random shares). Then for each $m' \in \mathbb{F}_p$, there exists some y' such that $(y_{i_1}, \ldots, y_{i_{t-1}}, y')$ reconstructs a degree-(t-1) polynomial with m' as the constant coefficient. Since the parties do not know a *t*th share, the polynomial and thus the secret cannot be recovered.

3. PACKED SECRET SHARING

At a high level, PSS is an extension of Shamir's secret sharing scheme that allows the sharing of k different secrets simultaneously. We introduce the scheme of [FY92], which is a (t - k, t, k, n)-packed secret sharing scheme, where k is the number of secrets, n is the number of parties, t parties are required to recover the secret, and no colluding group of less than t - k parties can gain any information about the secrets. No security guarantee is made about m colluding parties if $t - k \le m < t$.

Intuitively, the scheme uses additional properties of the polynomial to hide more than a single secret.

(t-k,t,k,n) Packed Shamir Secret Sharing

Parameters: A security parameter λ , a threshold t, number of secrets k < t and n parties. Let \mathbb{F}_q be the message space \mathcal{M} . Let the secrets be (m_1, \ldots, m_k) and let $(e_1, \ldots, e_k) \in \mathbb{F}_q^k$ and $(\alpha_1, \ldots, \alpha_n) \in \mathbb{F}_q^k$ be distinct public values where $\alpha_i \neq e_j$ for any i, j.

Protocol:

The share algorithm share $(1^{\lambda}, (m_1, \ldots, m_k))$.

- (1) The dealer samples any degree-(t-1) polynomial p such that $p(e_i) = m_i$ for all $i \in [k]$. Note that there are at least q such polynomials since $t-1 \ge k$.
- (2) The dealer sets $s_i = p(\alpha_i)$ for all $i \in [n]$.

The reconstruct algorithm reconstruct $(\{y_{i_j}\}_{j \in [t]})$.

(1) The parties compute the Lagrange basis polynomials

$$L_{i_k}(x) = \frac{\prod_{j \neq k} (x - \alpha_{i_j})}{\prod_{j \neq k} (\alpha_{i_k} - \alpha_{i_j})}$$

for each k.

(2) The parties compute the polynomial $p'(x) = \sum y_{i_j} L_{i_j}$ and output $(p'(e_1), \ldots, p'(e_k))$.

The correctness of the protocol follows from a similar argument to the correctness of Shamir Secret Sharing. For security, note that we can write $p(x) = q(x) \prod (x - e_i) + \sum m_i L_{e_i}(x)$ where q(x) is a random degree-(t - k) polynomial over \mathbb{F}_q . Thus (t - k) or less colluding parties cannot find any information about

q(x). However, more than (t - k) colluding parties could obtain additional data points, for example $q(\alpha_j)$ for certain values of j in the colluding group.

References

[FY92] Matthew Franklin and Moti Yung. Communication complexity of secure computation (extended abstract). In Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of Computing, STOC '92, page 699710, New York, NY, USA, 1992. Association for Computing Machinery.